
...N'..,.....

THE COMPUTER JOURNAL~
l

Programming - Applications - User Support

Issue Number 26

Bus Systems
Selecting a System Bus pale 4

Using the SB180 Real Time Clock pale 7

The SCSI Interface
Software for the SCSI Adapter page 12

Inside AMPRO Computers page 23

NEW-DOS
Part 5: The CCP Commands Continued page 31

ZSIG pale 36

Affordable C Compilers page 41

Concurrent Multitasking
A Review of DoubieDOS pale 47

The Computer Corner pageS6

S3.00U.S.

-',

Editor'5 Page
THE COMPUTER JOURNAL

190 Sullivan Crossroad
l

Columbia Falls, Montana
59912

406-257-9119

Editor/Publisher
Art Carlson

Art Director
Donna Carlson

Production Assistant
Judie Overbeek

Circulation
Donna Carlson

Contributing Editors
C. Thomas Hilton
Donald Howes
Jerry Houston

Bill Kibler
Rick Lehrbaum

Peter Ruber

Entire contents copyright ©
1986 by The Computer Journal.

Subscription rates-$14 one
year (6 issues), or $24 two years (12
issues) in the U.S., $22 one year in
Canada and MeXico, and $24 (sur
face) for one year in other coun
tries. All funds must be in US
dollars on a US bank.

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbis Falls, Montana, 59912, or
The Computer Journal, PO Box
1697, Kalispell, MT 59903.

Bulletin Board-Our bulletin board
will be on line 24 hours a day at 300
and 1200 baud, and the number is
(406) 752-1038.

Address all editorial and adver
tising inquiries to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912 phone
(406) 257-9119.

The Computer Journal/Issue 126

Software vs. Hardware
Which technology is the driving force

in the microcomputer industry, software
or hardware? It's like asking which
came first, the chicken or the egg,
because one can not exist without the
other.

Way back in ancient history (six or
seven years ago) the Apple II~ was
popular with the hobbyists, but it took
Visica1c'1l) to fire up everyone's
imagination about what the micros could
do for business. Visicalc was the first
step in legitimizing the micro and
resulted in greatly increased sales for
the Apple II.

When the IBM PC'" appeared with 16K
and one drive, there was very little sof
tware available for it. As new software
was developed it was apparent that the
system needed enhancement, so people
added RAM, additional drives, and hard
disks - and even better software was
developed to use the expanded
capabilities. Programs like Lotus 1-2-~

completed the legitimizing of the micro
which was started with the Apple II and
Visicalc.

The driving force is neither software or
hardware, but rather the solutions to
problems. A few computer enthusiasts
<like many of us) will buy a program or
system because it's new and different,
but the large volume sales are to fill the
needs in the office and the factory. They
are not interested in neat ideas, they just
want something to solve their problem.

Obviously, the hardware has to exist
before the software can run on it, and a
study of the successful systems shows
that the hardware is usually available on
the market for quite some time before
the software which assures it's success is
fully developed. Astute computer buyers
don't buy hardware, they buy the system
which runs the software which they have
selected.

It is the broad pool of available third
party software and peripherals which
results in the successful sales of a
system, but the system has to be
available before the software is written.
It's something like pulling yourself up by
your bootstraps.

Desktop Publishing-The ~ext

Visicalc?
There is a lot of hype and exagerated

claims about desktop publishing, but it
has a tremendous potential and may the
primary mover for selling micros for the
next two or three years.

According to William J. Dorman,
president of Dorman Associates, Inc., as
reported in the September/October issue
of The Typographer, "Desktop
Publishing is emerging as a leading ap
plication of personal computers for both
corporate and commercial market
segments." DAI estimates that by 1990
the market for dedicated desktop
publishing systems and PC composition
and page layout software is expected to
reach $651 million. The revenue
estimates include 'dedicated pes, sof
tware, image scanners, laser printers,
typesetters, storage devices, and ser
vice.

While the term desktop publishing is
being used to cover everything from
church bulletins to major books, this is a
very broad field with many different
requirements. Here at TCJ, we have
been involved in both professional
phototypesetting and microcomputers so
it is easy for us to evaluate the systems
being presented. For others who have
experience in either computers or
typesetting, but not both, it is much more
difficult - and for those with experience
in neither, it is a real bucket of worms.

The battle for desk top publishing
(DTP) sales is heating up, and there will
be a blood bath because too many people
are entering the business without the
necessary experience or financial
strength (sound familiar?). The poten
tial DTP buyers need professional advice

To order, call: (503) 254-2005

CP/H 15 a Trademark of Digital Research
MS-DOS 1s a Trademark of Hlcrcsoft Corporation
K-OS ONE and HTPL are Trademarks of Hawthorne Technology

opportunities
The national economy is soft with more

and more manufacturing being moved
overseas, and the job market in the com·
puter industry is chaotic with lots of
layoffs. Colleges and universities are
turning out thousands of "Computer
Scientists," and everyone with a degree
is offering their services as a consultant.
The real opportunities are not in the
computer industry which makes the
systems, but rather in the industries
which need to use computers.

What is needed right now, is not pure
computer experts with no idea of what's
going on in the real world, but people who
understand how to use computers to
solve problems. Business doesn't buy
computers - it buys solutions to
problems.

they have access to the perculiar
requirements of the DTP market. TCJ is
not the place to talk about points, picas,
leading, kerning, letterspacing, and all
the fine points of typography; but we can
talk about programming, text filters and
formatting, and equipment interfacing.
We could even run a short series on 'How
to Talk to a Typographer' to explain
some of the terms they use and put this
on our BBS if there is enough interest.
Let us know if you would like to see more
information on this subject.

Refined Goals for TCJ
As the industry changes, so must we!

And I'm using that as a collective we
meaning all of us as a group, not just
TCJ. Five years ago we were involved in
creating the microcomputer environ
ment - now we have to concentrate on
applying micros to problem solving and
needs, for both industry and ourselves.

TCJ will provide the information you
need with more in-depth articles on how
to solve problems with the systems
available now, and how to prepare your
self to work with the new systems which
are coming. Much of the coverage will be
on programming because all of us can
write or modify programs while few of us
are in a position to manufacture a har
dware system, but we will continue to
carry the information on both new and
existing hardware systems necessary to
understand and program them. Many of
the upcoming applications for net·
working, LANs, control, and desk top
publishing will require the use of buses,
and the article on bus systems in this
issue is the beginning of a series on using

(Continued on page 53)

Hawthorne Technology

8836 SE Stark
Portland, Or 97216

for any service call from the manufac
turer - even if only to replace a blown
fuse or panel lamp. That's if the service
person has the right part with them,
otherwise it can cost another $1,000 for
the second trip to replace a 25 cent item.
One owner was faced with paying $950 for
a rebuilt replacement 8" drive (standard
SA8(1)) plus the $1,000 service call
charge. A local computer person just
plugged in one of the drives being sold so
reasonably now for a savings of about
$1,700 dollars, even after making a nice
profit.

Many of our readers are capable of
providing the software and hardware
support needed in this growing field if

With K-OS ONE, you can read and write ASCII files
on MS-DOS format diskettes. This gives you the
tools you will need to port K-OS ONE to your
hardware.

They are written in HTPL, a powerful, high level,
language hybrid. You don't have HTPL7 No problem,
the HTPL compiler is included. The K-OS ONE
operating system is small. You can edit and re
compile the whole operating system in only 64K of
RAM.

Now you can put K-OS ON~, a 'simply' great
operating system, on your 6~OOO. It is simple to
use and has all of the features you would expect
from an operating system in the class of MS-DOS or
CP/M. It's easy to customize because you get
source code for the operating system and the
command processor.

$50
68000 OPERATING SYSTEM

The package also contains a line editor, a 68000
assembler and a manual covering the whole package.

••

on selecting and implementing hardware
and software packages, and they'll also
need support in the way of special sof
tware for text file filters, disk format
conversions, etc., plus hardware support
for equipment interfacing and main
tenance. This is a ripe field for computer
consultants who have the required
knowledge for this specialized field.

Although the typesetting requirements
are specialized, much of the equipment is
standard and normal maintenance and
repa~r is no different than regular com
puters. Some typesetter manufacturers
charge $100 per hour including travel
time and in a rural area like ours the
ov;ner can figure on paying at least $1,000

2 The Computer Journal/Issue '26

B.H.

Graphing Algorithm Needed
I am looking for an algorithm which

will calculate the shortest distance bet
ween point A and point Z through n poin
ts. Often called a "graphing" problem,
and what I'm looking for is a solution to
an "undirected" graph - i.e., each
existing edge can be travelled in either
direction. N.B. Similar to, but not the
same as, THE TRAVELLING
SALESPERSON. In my application, not
every single point is connected to the
others.

6502 CP/M Clones
In issue 1125, D.E. voiced a query as to

CP/M clones for the 6502 processor. I
have been using an operating system
called DOS-65 for the past four years on
my ROCKWELL AIM-65. This is VERY
CP/M look alike, and I have been quite
impressed with it's performance. I ob
tained the system from:

Cedar Valley Computer Association
P.O. Box 671
Marion, IA 52302

but the operating system was written by:
Microsystem Technology
1363 Nathan Hale Dr.
Phoenixvile, PA 19460

It of course requires some tailoring
(like writing your own BIOS), but beyond
that, it works fine. It came with an
assembler, a debugger, and an editor, all
also CP/M utility clones. Most of my first
disk based software was written for this
operating system, so I have quite a fon
dness for it!

I don't know if Microsystems Tech is
still around, but CVCA should be able to
tell you. They, however quit selling the
operating system.

As a sidenote, there is also a very good
FORTH implementation running around
for 6502, written by:

J.W.Hance
1789 Austin Rd.
Miamisburg, OH 45342

I have corresponded with Mr. Hance
just this year, so that address should be
fairly good.

More on 8·bit versus 16·bit
Advertisements in trade magazines

are often profound in many ways. When
reading a popular trade journal I came
upon a two page advertisement which
sported a picture of a large bengal tiger
laying next to a small, :.vhite kitten. The
caption read, "The difference is power."
This is a profound concept when applied
to the ongoing debate between eight and
sixteen bit system users.

For more years than I care to remem
ber I have been an advocate of eight bit
systems. I have heard all the arguments
for both technologies. Each have their
valid points, and each their fiction.

For writing I have always preferred
my little AMPRO CP/M system with a
rather transient 20 megabyte hard drive,
(the hard drive is used on my AMPRO
'186 as weIll. My editor requests, nay
demands, text in WordStar format. My
library of software is CP/M based. Yet,
the Borland Editor Tool Box, which does
not run unaltered on the '186 allows me to
produce a text editor which makes the
CP/M tools I have seem insignificant.

When Iannotate listings, or edit text, I
am constantly needing to refer to the
program source code, or other reference
material. The 512K Little Board '186 with
a very simple text editor allows me to
edit, view, and perform "cut and paste"
operations not possible with a 64K
system. The ability to work any number
of files at once on the screen is a tool I
personally need.

Other authors have compared the
technology war to automobiles. But, I
don't feel they have fully explained their
rationale. One would not use a semi
trailer truck to take the kids to school. In
the same thought pattern one would not
use a Volkswagon for heavy industrial
work, though some might try from
loyalty to a given technology.

Instead of continuing the debate, an
exceptionally foolish argument, over
which technology is the best, the fastest,
etc., why can't we focus these energies
into more productive efforts. For the fir
st time in computing history we, the
common people, have a choice as to the
amount of computing power we may ap
ply to a given application. How long will
we defend that which needs no defense?
Instead why don't we use the space in our

The Computer Journal/Issue 1126

magazine, and the efforts of warfare to
expound upon the proper uses of each
technology? In the final analysis "The
difference is power." I would hope the
readers of TCJ would have the intellect
to focus upon the use and selection of
power. But, even as I write this I realize
this is a lost hope. Man has never been
overly adept in the use and selection of
power. He uses it to conceal opinion,
bigotry, ignorance, and fiscal insecurity.
Why should computerists be any dif
ferent?

T.H.

PS: Should anyone have a PC or CP/M
system they are ashamed to admit
owning, they may be rid of it by sending
it to me in care of TCJ. In this wise they
have nothing they may feel the need to
defend. I need a 100% PC compatible por
tabe for research, the rest will be sent to
the Multihandicapped Blind Foundation
for distribution to people who cannot af
ford to partake in this exclusive
argument.

68000 Hacker
Sure enjoy TCJ, may you prosper!
Yes, a thousand times yes, to your

question about interest in a hacker's
68000 system. I'd hoped Atari or Lee F.
would ultimately fill the bill, but they
aren't so let's go on our own. The EMS
system, from all reports, is far from
satisfactory and the system presented in
The Computer Smyth might have been
great as a controller, but not as a general
purpose system. I, for one don't know of
any other bonafide contenders. I'll start
building as soon as I see a schematic/PC
board.

Delighted to see you're going to have
Clark Calkins as a contributor. I'd like to
know a lot more about his dissassembler
and technique. His stuff has to be seen to
be believed and is the price ever right.
Hope you get him into print in a hurry.

Once again, thank you for a good and
constantly improving periodical. Your
and Dave Thompson's efforts provide
considerable comfort and stimulation.

C.H. A.M. (Continued on page 20)

3

Bus Systems
,

Selecting a System Bus
by Art Carlson

W hen designing a system, which do you choose first, the
microprocessor, the operating system, or the bus structure?
You hear a lot about the advantages of the different CPUs and
operating systems, but very little about bus structures. It's as
though the bus just comes along with the CPU and OS, and is not
one of your choices.

Whether or not you should concern yourself with the bus
depends on your intended use for the system. If it is just for wor
dprocessing and spreadsheets, base your decision on other
parameters - but if it is for real time control or other hardware
interfacing intensive applications, the choice of the bus is of
primary concern.

Why Bother Learning About Buses?
With the flood of PC clones coming from Taiwan you'll soon

be able to buy a system complete with keyboard, drives,
display, and software for less than $500. The PC has an open ar
chitecture with slots, so all you have to do is to buy cards and
throw them into the slots, right? Well, perhaps, because you
have access to the bus and you can add serial, parallel, SCSI,
IEEE 488, and other ports which enable you to communicate
with printers, laser printers, hard drives, modems and other
standard office peripherals - but industrial applications have
additional requirements and the buses developed for these uses
provide many powerful enhancements such as subsystem buses
for arbitration and interrupt service.

The appliance computer market for normal office type uses
is saturated and offers little opportunity for hardware develop
ment (if you need one, just go out and buy it>. The real needs in
that market are for custom programming and system im
plementation using standard off the shelf components.

I read a tremendous amount of material, and the current job
opportunities are in fields other than personal computers,
spreadsheets, wordprocessing, dataprocessing, etc. The ac
tivity is in engineering, the laboratory, and the factory; and the
microcomputers are often dedicated units without keyboards,
drives, or displays, which may be interfaced to a master unit.

The selection of the bus is crucial for these applications
(which I'll call non-pc for non-personal computer office ap
plications), and no one bus is best for every application. You
have to select the bus which best solves the problems for a
specific project. As stated in the October, 1986, IEEE Spectrum,
"A modern high-speed bus with a 32-bit data path, designed to
support multiple processors, is complete overkill for many ap
plications. A cheaper, slower, 8-bit bus, optimized for a single
processor, may be perfectly adequate." and "Some instrumen
tation buses are designed to connect crates of test and
measurement equipment hundreds of feet apart; others fun
ction only within a rack of equipment."

Some of the better known buses in current use are: STD
Bus, 80100, PC bus, GPIB(IEEE 488), Multibus, Versabus, VME

4

bus, Multibus II, <Ml4, and G-96. Two years ago I would have in
cluded the Apple II bus, but I think that it is dead for now.

Even with all these available, there is still a lot of bus
development activity for highly specialized applications. The
Electronic Industries Association has been working on the
CEBus (Consumer Electronics Bus) including a command and
addressing language that would become part of a unified
residential control system. Standards are .currently being
developed for four residential distribution systems: the power
line (PLBus), the wired bus (WIBus), a single room infrared
remote system (SRBus) , and low power RF (RFl3us).

Automobiles will include a lot more microprocessors and
sensors spread around the vehicle, and the industry is
developing a multiplexed bus to minimize the amount of wire.
We accept our cars as commonplace, but the automotive en
vironment is quite severe with temperatures from -35 to +140
OF, high humidity, dust, shock, and vibration.

The automotive manufacturing industry, led by General
Motors, is also developing MAP (Manufacturing Automation
Protocol> which is based on the International Standards
Organization's 7-layer OSI (Open Systems Interconnection)
model for network communications.

In order to participate in system design, application or im
plementation, and programming for these new fields, you'll
have to be familiar with bus structure and protocol - and they
won't all be in military or space applications, they'll be in your
home, in your car, and in the factories. I feel very strongly that
we must learn about bus structures and protocol or else be left
out of future developments.

System Requirements
Every application has its own requirements, and what I

need may not be the best answer to your needs - but it is a star
ting place. My needs are for an experimental system which can
be used to investigate a variety of techniques and to evaluate
various hardware and software products. While I would like to
build a permanent ground temperature and water level monitor,
and a sophisticated solar heating evaluation and control system,
most of my projects will be of a temporary nature and will be
disassembled when completed. I can't afford the high-priced
state of the art products, but neither can I afford to waste time
with low priced toys.

I want the flexibility of using multiple 8-bit CPUs, 16-bit
CPUs, 32-bit CPUs, and microcontrollers with the choice of
using their own I/O or the system I/O. One of my primary con
siderations is that the system does not limit my choice of CPUs
or I/O, and that I can easily change from one project to another.'

I don't feel that any CPU will ever be fast enough to do
everything! Regardless of how fast the CPU is, we'll always
want to do it faster. Silicon is cheap and I want to use multi
CPUs rather than multi-user designs (I'm considering the users

The Computer Journal/Issue 1f26

.4l

'.

Priced from
$895.00

10MB System
Only $1645.00

• ComprehenstVe Software Included,

• Enhanced CP/M operating sy5tem
with ZCPR3

• Word processing, spreadsheet,
relational database, spelling
chec:l<a', and data encryptl
decrypt (T/MAKER III'")

• Operator-friendly shells; Menu,
Friendly'·

• Read/wnte and format dozens of
floppy formats (IBM PC-DOS,
KAYPRO, OS8ORNE, MORROW...)

• Menu-based sy5tem customlzation

sy5tem With ZCPR3
• Read/write/format dozens of

noppy formats (IBM PC·005,
KAYPRO, OSBORNE, MORROW)

• Menu-based system customlzatlon
• Operator-fTiendly MENU shell

• OPTIONS,

• Source Code

• TurooDOS

• ZRDOS
• Hard disk expanSIon to 60

mesabytes
• SCSI/PlUS" multi-master I/O

expansIon bus

• Local !'rea Network
• STD Bus Adapter

,_, IBMCOtP.; Zl!OI'<', z,~ Inc.• CP/M',
~ -.on; ZCPU' & ZRDQS._,

Ecneon. Inc.; Turbo 005'. So_. 2000,
Inc.; T/MAKER 111'-, riMekef' Co

• Ready-t~ protessoonal CP/M
computer system

• WOl1<S with any RS232C ASCII
terminal (not included)

• Network available
• Compact 7.3 x 6.5 x 10.5i~

12.5 pounds, all·metal construction

• ~l and \trsatile,
• Based on Little Board

single-board computer

• One or two 400 or 800 KB floppy
drives

• lo-MB internal hard disk driYe
option

~

..-mHA: FACTOllW, SA, (1) 4HlO'a. MlCIlOCOMPVTEIlS, (1)'3) 500-01>28
1lX 220408 _ CENT1lE -. CNC-DAL'< L£AOER lIDA,

El£CT1lONIQUE L!MPEIl£Ull, (041) 23-45-4', (41) 21>2-221>2, 1lX 04'-631>4 ll£HMAIlIl,

1lX 421>2' CAHAIlA: D'/W.COMP 0ANllIT, (03) /)/)'20-20, 1lX 435SB
COMPUTEA SYSTEMS lID, (/)()4) 872-7737 F1M.AHD: SYMMETRIC OY, (0) 58S-322,
EHGl»lD: QUANT~ 1lX 12139415llAEL: AlPHA 1£1lMINALS,
(01) 253-8-423, 1lX 946240 REf,' 9003131 11O, (3)4~1/)-95, 1lX)41/)/)7 SWEDII':
FIWG: EGAL-, (1) 502-1800. 1lX 1>20893 AlIAKTA, (08) 5+20-20, 1lX 13702 USk
sr_: XENIOS INfOllM'J1C.A., 593-0822, CQNTAG ,>Hi'flO COMP\IIERS INC,
1lX S031>4 AIISTIAI.Io\: JoSP Tn., (., 5) 9/)M'230 TEJ.£)t 49<0302

CP/M 2.2
INCLUDED

Little Board™ •••• $149
The World's Least Expensive CP/M Engine

BOOKSHELFTM .s'tZ'Cl·tZJ 100
Fat, CompKt, Ifi!tI QuIlty, IE.Byoto1Isc CP/M Sptan

• 4 MHz Z80A CPU, b4K RAM, Z80A
ac, 4-32K EPROM

• MIni/MIcro Floppy Controller
('-4DTlves, Slngle/Douole DenSIty,
'-2 Sided 40/80 tracJ<)

• 2 RS232C Serial Ports (7~9600 baud
& 7~38, 400 bauo), 1 CentroniCS
PrInter Port

• Power ReqUirement, -5'<1)(at .75A;
-12VDC ,tOSA ! on ooard -1 'N
converter

• only 5.75 x 7.75 ,ncnes, mounts
directly to a ~1/4' disk dTlve

• ComprehenSIVe Software Included,
• Enhanced CP/M 2.2 operating

as devices, not people), although some individual devices may
incorporate small multi-tasking programs. I consider the host to
be a master which tells slaves what to do, but which does not
participate in the actual execution pf the task. For example, the
host could command that a stepper motor be ramped up to a
speed of 2,000 pulses per minute for 3minutes then ramped down
to zero, while monitoring an encoder to be sure that the shaft
really was turning, monitoring the torque required of the driven
device as an indication of process condition, and monitoring
overtravel limit switches; using interrupts to demand im
mediate response from the master in the event of an out of spec
condition. A dozen or more similar operations occurring during
the same period would drive any concurrent operating system
nuts, and how would a concurrent system with a single CPU
keep everything else running if one of the tasks demanded full
attention in an emergency situation?

Others will say that the new CPUs are so fast and so power
ful that they can do all this and still be able to handle the
emergency situation, but this is only true (if it is even true at am
if the system is designed so that the CPU has a lot of slack time,
and this means that nothing is running as fast as it could run
with a CPU's full attention. I prefer to use one CPU for one fun
ction, with some possible minor multitasking as part of that fun
ction. We can quibble about what consists a function and how
finely the job should be divided, but I'd rather just have a
flexible expandable system so that the functions can be com
bined, divided, or regrouped as needed. I believe in reliability
thru simplicity with numerous portions each doing their job ex
tremely well instead of one complex device trying to do
everything. I'm talking about a control application in
automation, robotics, manufacturing, or other significant areas
where system reliability and response time are crucial.

Practical Solutions
There is no one right choice when selecting a bus system.

You have to consider the requirements, and the resources and
time available, and select from what is available. I have decided
that, for now, I want to use an existing host system with
keyboard, display, drives, printer, operating system,
languages, etc., and concentrate on applications instead of the
host system" My interests do not currently include color,
graphics, or sound, which are the main thrust of the popular
micros.

Hal Hardenbergh (DTAK GROUNDED) commented on the
"Hacking the 68000" statements in my #25 editorial and said that
since the lowest priced and most common system is the PC
clone, we should use it as the host and interface to our 68000
board thru a port. This makes a lot of sense because it allows
anyone to participate without buying a lot of non-standard
equipment.

A very important point to consider is whether you are doing
something for your own use, if you want to work in cooperation
with others, or if you intend to market a commercial product. IT
you're working by yourself, anything that satisfies you is OK; If
you want to work with others, you'll have to use equipment com
patible with theirs; if you have a commercial product in mind,
you'll have to either supply a complete package or something
which works with the systems your customers use - and most of
them will have IBM PC clones.

Most of my computer use right now is in the areas of wor
dprocessing, text file manipulations, data base, and com
munications, in support of TCJ and Rockland Publishing; but

The Computer Journal/Issue 1126

COMPUTERS INCORPORATED

67 EastE'otIyn_.• MoUntlllnVlew,CA940-41 • (<415)962-0230. TELEX 4940302

my pnmP.ry personal interest is in measurement and control.
I'm loolung for a development system, but the current crop of
mass produced personal computers are poor prospects for con
trol syst~m hardware interfacing because they are designed for
games and office use.

It would be nice to have all the devices sitting on the same
bus for high speed communications but the interface can be ac
comphshed usmg standard ports, and in fact this will be
necessary where the devices are located at a distance from the
master Some of the definitions of "Bus" are: "The physical
channel over which electric signals are transferred between the
components of a system, along with the protocol rules governing
the transfer", "A means of distributing a set of signals so the
comDuter can be interfaced with memory and external
devices "

According to these the RS-232C interface can be considered
a bus. although we don't normally consider it as such. Some of
the tOPICS we'll be evaluating are distributed vs, centralized
processing, and selecting from various communications ports
and buses. If the host system you choose does not provide for ac
cess to the bus you'll have to interface through one of the ports
provided.

I started with an Apple][+, and its open architecture with
good third party support <I/O and A/D boards are available for
under SI(0), and an abundance of detailed technical books made
interfacing easy. The problem is that I don't like Apple's
operating system or disk interfacing.

My next choice was S-I00/IEEE 6913 because it provides 24
address lines 06 Mbytes), 64K I/O ports, 10 vectored interrupt
lines, 16 data lines. up to 16 masters on the bus, plus status and
control lines. There was a lot of 5-100 activity, but frankly, the 5
100 bus was more than I was ready to handle. Now, 5-100 is con
sidered a dinosaur.

Another possible choice was the IBM PC which has an open
system with slots, but I haven't seen enough information on
designing and building your own cards - and I've been told that
it is a real bitch to interface to.

Most of the other personal computers are designed strictly
for games, wordprocessing, spreadsheets, or accounting, and
don't have the required I/O capabilities or bus access.

A Proposed System
My first inclination was to use the 5-100 bus, because it

provides the features I need, and I have two systems. There are
several problems. The first problem is that very few of the real
world interface cards I need are still being produced, and sup
port for the existing ones will probably be dropped in the near
future. If I were to work with the 5-100 bus, I'd have to plan on
designing and wire wrapping all the boards for the system. The
second problem is that I'd have to work on everything alone
because not many people are interested in 5-100 control ap
plications.

My second choice was the IBM-PC bus. This has the advan
tages of a large number of users and a lot of software, but most
of the units are already overloaded with cards and the operating
system developments are not headed in the direction I want to
go.

I was looking for a industrial style bus instead of a micro
computer style bus, which could be used from various micro
computers and still be system independent. I found the answer
when I saw the AMPRO SCSI/IO~ which interfaces the STD
bus to a SCSI port. This allows people to use any computer with a
SCSI interface - adapters are available for Apple II, IBM-PC,

8

S-I00, Digital PDP-lI, LSI-lI, MicroPDP-lI, VAX and
MicroVAX, AT&T 3B2, VMEbus, Multibus, and others, and
almost all new computers will have the SCSI interface built-in.
Now different workers can use their choice of host system, and
still work with the same SCSI or SID bus peripherals.

I'll be using the AMPRO 8-bit and H,·bit Little Boards for the
primary units because they incorporate the SCSI protocol, and
their PROTO boards give me buffered address, data, and con
trollines. These boards are designed for industrial use, and will
work with their upcoming 16-bit CMOS board and the future 32
bit board.

I chose the sm bus because the AID, I/O, Motor Control,
CPU, and many other boards are available off-the-shelf at
reasonable prices because it is a mature technology which has
seen widespread industrial use. While the SID bus was designed
for 8-bits, they have revised it using multiplexed lines for 16-bit
operation. There's a HD64180 board, and even an 8088 CPU with
M5-DOS Ver. 3.1 in ROM.

Using AMPRO's SCSI/PLUSiI> implementation, I can hang
a number of 8-bit and 16-bit (32-bit in the future) boards on the
SCSI bus as master/slave units, and use SDT bus cards for the
I/O functions. Other workers can use their favorite computer
with a SCSI host adapter to control the SID bus and whatever
other devices they want to hang on the SCSI interface.

I'm aware that much of the advanced work is now being
done on the Intel Multibus II and the Motorola VMEbus plus
several new buses, but these 'state-of-the-art' boards are
currently out of my price range. A large number of companies
are entering this market, and as the prices drop because of the
competition we'll be ready for them because they'll interface to
SCSI.

For reasonably priced - but still very powerful - projects
in automation, robotics, measurement, and control, the com
bination of AMPRO Little Boards, the SCSI interface, and the
STD bus will be very hard to beat.

I'll be working on assembling a system, including C and
assembler programming tools, ROMabie code, and even small
independent units using special microcontroller chips. Some of
the things we'll cover include multitasking programming,
communications, interfacing, motor and device control, op
timum adaptive control, and sensors. We'll be very heavily in
volved in both hardware and programming. Your input and
comments are welcome by mail, phone, or modem (see page
one for our modem number). •

•••••••••••

Bibliography
IEEE Spectrum, "A Framework for Computer Design",

October, 1986, pg 49, W. Kenneth Dawson, eta!.
Electronic Engineering Times, January 13, 1986, page 29.
Electronic Component News, December, 1985, page 9.
Electronic Engineering Times, "EIS's Home Electronic

Bus", July 23,1986, page 35.

The Computer Journal/Issue 126

Using the 58180 bReal Time Clock
by Kenneth C. Turner

Shortly after I read Steve Ciarcia's description of the SBI80
in the September and October, 1985 BYTEs, my faithful, but
rather marginal home-brew Z-80 system died its final lingering
death. Discretion seemed the more econom~calpart of valor at
this point, so I sent my money to The Micromint of Vernon, CT,
and was soon the pleased possessor of my very own SBI80. It's a
great machine, and learning to use ZCPR3 has been rather like
exploring some great Victorian mansion, with miles of maze
like passageways and hidden rooms.

Naturally, when one has acquired a faster toy, the first thing
one does is to race it: how fast is it, really'! And there's a real
time clock on the Hitachi 64180 CPU chip, so it ought to be easy
to do all the benchmarks, right? And so it is, but you have to
delve a bit to find out the actual recipes. This article is a cook
book; I will tell all- or, at least all that's necessary to tell what
time it is, and how fast it's going. You can use these routines to
record time of day on your output, and to optimize your code for
speed. I will discuss Assembler approaches, but the emphasis
will be on BASIC - in particular, on Microsoft BASIC, since this
is probably the most widely used BASIC on CP1M systems.

HD64180 Timer Architecture
Before we get to the recipes, we have to look a bit at the nature

of the ingredients - in this case, how the on-ehip timer looks to
the software. The HD64180 has a number of internal devices, and
they are accesed as internal I/O ports. These are treated in
much the same way as external I/O ports, but with special I/O
instructions: INO and OUTO, instead of IN and OUT, for exam
ple. All of the on-ehip devices have their pre-defmed locations in
"Internal I/O Port Space." In particular, the Programmable
Reload Timer, as Hitachi calls it, occupies internal port
locations OCH to 10H and 14H to 17H. Table I identifies the fun
ction of each of these addresses.

All registers are cleared to zero on system reset. Each bit of
the control register determines some timer function. These fun
ctions are described in Table II. Bits are numbered 0 to 7, with 0
being the least significant bit.

When a timer channel is enabled, that channel's data register
counts down from whatever value it contains. One count is sub
tracted for every 20 cycles of the system clcx:k. When it reaches
zero, the Interrupt flag for that channel is set to 1, the data
register is reloaded with the number in the reload register for
that channel, and the countdown continues from that value. It is
important to note that the interrupt flag will stay at one forever
after the first countdown to zero, until it is cleared by either a
reset or a read of BOTH the control register AND either the high
or low byte of that channel's data register. That means that the
elapsed time will have an uncertainty of some number times
<Reload register value) x 20 clock cycles. (This is 2131r'J msec
for the 6.144 Mhz clock of the SBI80, if one loads the registers
with FFFF hex.> Measures must be taken to avoid this uncer
tainty if we wish to time longer durations. Usually interrupt
subroutines are used to do this bookkeeping, but we will not deal
with interrupts in this article, except in passing.

The general procedure for using this sort of timing system is
as follows:

1) Define a control word. The details of this process will be
discussed in the section on BASIC routines.

2) Load a suitable value into the Reload Register.
3) If desired, write a suitable value into the Data Register.

(Note that if you don't do this, the first countdown may be
wrong.>

4) Write the control word to the Control Register.
5) Stand back and enjoy the results.

'-'"

TABLE I Int&rn~l Timer Regi.ter Addre••••

HEX ADDRESS FUNCTION

0C Low Byte, Ch~nn.l fiJ D~ta Regi.ter
0D High Byte, Channel fiJ Data Regi.ter
0E Low Byttt, Ch.annel fiJ Relo.ad R.gi.ter
fiJF High Byte, Ch.ann.l fiJ R.load Regi.ter

10 Timer Control Regi.ter, Both Ch.ann.l.

14 Low Byte, Ch.ann.l 1 Data Regi.ter
15 High Byte, Ch.annel 1 Oat. Register
16 Low Byte, Ch.annel 1 R.load Regi.t.,.
17 High Byte, Channel 1 Reload Regi.ter

The Computer Journal/Issue #26 7

TABLE II Timer Control ~egi.ter Bit Functions

BIT NUMBER FUNCTION

7 Ch.nnel 1 Interrupt Fl.g: Thi. i. set to 1
when Ch.nnel 1 D.t. Regi.ter decr...nt. to 0.
It i. reset to 0 when BOTH the Timer Control
Register AND EITHER the High or Low byt.s of
the Ch.nnel 1 D.t. RRgister .re re.d. Thi. bit
i. re.d only.

b Ex.ctly like bit 7, but for Ch.nnel 0.

5 Ch.nnel 1 Interrupt Enable: If this bit is
.et to 1, then when bit 7 flip. to 1, .n interrupt
i. generated.

4 Ex.ctly like bit 5, but for Ch.nnel 0.

3 .nd 2 The.e 2 bit. control the MUltipl.~ing of .n
output .ign.l with .ddre•• line 18. Since
this .ddre•• line is used to ••lect the ROM
on the SB180, you"d b.tter l ••ve the••t 0.

1 Ch.nnel 1 Enable: When this bit is 1, the
Channel 1 Oat. R~ister count. down from
whatever it happen. to contain, at one count
for every 20 clock cycle••

Exactly like bit 1, but for Channel 0.

TABLE III TIME DATA AREA IN BIOS 2.1

ADDRESS (HEX> DATA

EAFC
EAFD
EAFE
EAFF

EB00
EB01
EB02

EB03
EBil4

tenth. of second.
Seconds
Minute.
Hours

Seconds
Minute.
Hours

Tenths of seconds
Tens of seconds

\

I
/

\

/

\
/

Real ti ... clock
St.rt. when you
re.et the .ystem.
Count. up.

W.ll Clock. You
can set this with
the TIME S comm.nd.

Count down timer.
Cycle. fro. 255,255.

EEc05 Motor Time (u.ed by Floppy Di.k I/O Routines>

The Data Register can be read at any time, without stopping
the countdown, if you read the Low byte first. This causes the
timer to store the High byte in a secret internal place, and give it
back to you when you ask for the High byte. Note that if you read
the high byte first, two things can happen. First of all, you will
get the value that was stored when the Low byte was last read.
Secondly, even if this is the first read, the 'real' High byte may
have changed (from overflow of the Low byte) by the time the
Low byte is read. You have to stop the timer in order to write to
the Data Register.

8

How the Micromint BIOS handles the Timer
The BIOS supplied by MicroMint, Inc., for the SB180 uses

Channel 0 to provide an interrupt driven real-time clock service
f9r the system. A ten byte area at the top of the BIOS routines is
kept updated for system time. Table III contains a map of this
area for my system, which is the 2.1 version of MicroMint BIOS.
If you have another version, you may have to use a different
base address than EAFC (hexidecimal base) in your routines. I
will tell you how to find the correct one below. You can find out
what version of BIOS you have by looking at the file BIOS.Z80 on
the source files disk in your distribution material.

The Computer Journal/Issue *26

In any case, the first four bytes of the timer area contain
hours, minutes, seconds, and tenths of seconds from the time
you last pushed the RESET button. The next three bytes contain
hours, minutes and seconds, and are settable with the TIME S
command. (The file TIME.COM \S in area 15 of the system
distribution disk,) The next two bytes are a countdown timer,
which continuously recycles from 255,255 (decimal). The low
order byte is in units of tenths of seconds, and the high order
byte is in units of tens of seconds. The last byte is the motor
timer, and is used by the floppy disk I/O routines. I won't say
anything more about that one.

Access to the timer area may be gained in a number of ways.
Under normal circumstances, the page address of BIOS will be
found in the third byte of memory. Put that in the H register, put
36(hex) in the L register, and you have the address of the jump
to the timer routine. A call to that address will return the ad
dress of the timer data area in the HI.. register. If that sounds a
bit confusing, see Figure 1for some Assembler Code which does
what I've just described.

I apologize for this ugly stuff - it will work, and it's under
standable, but it is, of course, a mortal sin to write self
modifying code.

If you want an absolute address, which is more convenient for
BASIC programs, life gets a little more complicated. Here are a
couple of recipes for getting an absolute address for the timer
data area:

1) Assemble the file BIOS.Z80 with the output listing option.
Then add the address of the bottom of the BIOS to the address of
RTC (at the very end of the listing). The address of the bottom of
BIOS is the value in bytes 1and 2of memory -3.

2) Use ZDMH or DDT or another debugger, and prowl around
as follows:

You type: DOOOO OOOF

Figure 1

. The debugger responds:
ooסס C3 03 DA 80 70 C3 00 BA FF 40 40 FF FF 40 40 FF
....P....@@ .. @@.

The first 3 bytes (after the 4 digit address1) are a jump in
struction to DA03, the warm boot jump in BIOS. We add 33H to
that to get DA36H. So next we enter: DDA30 DA3F

It says:
DA30C3lfl DE C31ifl DB C393 DB 000000 00000000 ..

This is the top part of the BIOS jump vector. We want the jump
at DA36, which is to DB93. So next we say: DDB90 DB9F

We then see:
DB90 00 04 00 21 FC EA C9 3A 5A DA B7 C8 21 40 DA 01
... !... :Z... !@ ..

The code at DB93 is what we want; it says:
LD HI..,OEAFCH
RET

The address EAFC (hex) is our goal. It is the absolute address
of the timer data area.

Using the Real Time Clock From a BASIC Program
Now that we've done our homework, we can move along to

reading the timer from a BASIC program. Once we've set the
time with the TIME S command (before we enter BASIC), we
can read it as shown in Figure 2.

Here we have simply copied the timer data area into a set of
integer variables and printed them out. With this, we have ac
cess to the time of day, the elapsed time since we last reset the
machine, and an interval timer in tenths of a second. Of course,
for many timing problems, tenth of a second accuracy is not
enough. We now turn to a more accurate technique.

We will use the unused timer channel, channell, to obtain the
ultimate precision the timer permits. This is a time step of twen
ty system clock cycles. For the 6.144 MHz SB18O, that amounts
to a 'tick' of 3.25520833 microseconds. 1536 of these ticks equal 5

(ZAS A.sembler Mnemonic.>

LD H, (1iJ2)
LD L,30H

LD (JUMP+ 1> , Hl.
JUMP: CALL JlJt1P

, Get 8IOS p~g.

, Thi. is the off..t
, HL now contAins the ~ddress of th.
, jump to the ti-.r routine
, store in the c~ll instruction
, On return, HL will point to the ti-.r
, d~t~ ~reA.

Figure 2

100 REM 8ASIC SEGt1ENT TO READ THE TIMER DATA AREA
11 IiJ DIM 8% (8)
120 REM 8(3-0) - REALTIME CLOCK HR,MIN,SEC,TENTHS
130 REM 8(0-4) • WALL CLOCK HR,MIN,SEC
141iJ REM 8 (8-7) • COUNTDOWN TIMER IN TENS OF SECONDS
150 REM AND TENTHS OF SECONDS
100 TIMER% • ~HEAFC ~ (this Addre.s VAlid for BIOS 2.1)
170 FOR I • 0 TO 8
180 8%(1) • PEEK(TlHER%)
190 TII'1ER{. - TII'1ER% + 1
200 NEXT I
210 PRINT 8%(3),B%(2)'8%(1),8%(S)
220 PRINT 8%(0)'8%(5),8%(4)
23S PRINT 81.(8),8%(7)
24i1 END

The Computer Journal/Issue *26 9

, q

milliseconds. (One second is 3a1200 ticks,) We will use a very
simple hand assembled machine language routine to do this
from our BASIC program.

First we will put FFFF in the data and reload registers, to
avoid any funny business with 2 zeros in a row appearing in the
countdown. (This would happen if the reload register were left
in its zero initial state. After counting down to zero, another zero
would be loaded into the register, and the next tick would give
FFFF (hex).} We then establish a suitable control word to
enable the channel 0 timer, but without any interrupts. Then we
are ready to time things. We read the data register. run the code
we want to time, read the data register again and subtract. The
difference (before minus after) is the time the code we are
timing took to run, in units of 3.26etc. microseconds.

Next we make up the control word. The warm boot routine
writes 00010001 (binary) to the timer control word. That enables
channel 0 and the channel 0 interrupt. We wish to enable channel
1, but not the channell interrupt. Therefore we simply set bit 1
to 1and write 00010011 (binary) as our control word. The code we
need for timer initialization is shown in Figure 3.

Figure 3

3E FF LD A,eFFH
ED 39 14 OUT0 UJ14H) ,A
ED 39 15 OUT0 (015H),A
ED 39 16 OUTS (016H),A
ED 39 17 OUT0 UJ17H) ,A
3E 13 LD A,013H
ED 39 10 ooT0 <010H),A
C9 RET

Figure 4

ED 38 14 INca A, (014H)
77 LD (Hi..) , A
23 INC Hi..
ED 38 15 INca A, (01SH)
77 LD <Hi..),A
2B DEC HI..
C9 RET

In order to read the timer data, we need to understand a bit of
how our BASIC handles passed parameters. This is different in
each BASIC implementation, and I will only discuss the
Microsoft BASIC USRn routines. When we make the call 1% =
USRn(J%), a call is made to the location set by the DEF USRn
=nnnn command, and the HL register points to the low byte of
1%. This makes our task very easy. The code is shown in Figure 4.

Now all we have to do is find a place to put our code and put it
there. If we had a lot of code, we would want to put it above the
basic area, but for just a little, like this, we can adopt a simpler
procedure. Microsoft BASIC has a built-in function called VAR
PTR, which returns the address of a variable. We shall use this
to store our machine language routines in an integer array.
Because BASIC moves it's arrays around as new variables are
defined, we must locate our actual address each time we wish to
use the timer. In the following code, the fast timer is used to
time the code that reads the system timer data area. In my
system that time is slightly under 50 msec. The overhead
required by the fast timer code itself (measured by deleting
lines 240-280) is 5.3 msec. See Figure 5.

, FOR RELOAD
, INITIALIZE THE DATA REGISTER
, BOTH BYTES
, INITIALIZE THE RELOAD REGISTER
, BOTH BYTES
, THIS IS THE CONTROL BYTE
• ST ICK IT I N TO ENABLE THE CHANNEL
• AND RETURN

, PUT LOW DATA BYTE IN A
• PUT A WHERE HL POINTS TO
• NOW HL POINTS TO HIGH BYTE
, PUT HIGH DATA BYTE IN A
• PUT A ~RE POINTS TO
, RESTORE HL SO IT POINTS WHERE
, IT STARTED, AND WE ARE DONE

FigureS

100 DATA ~F3E,&H39ED,&HEDI4,&HI539,~39ED

110 DATA ~D16,~1739,&H133E,&H39ED,&HC910

120 DATA &H3BED,&H7714,&HED23,&H1538
130 DATA &H2B77,&H00C9

140 DIM AXU5>
158 DIM B1.(8)

168 FOR I • 0 TO 15
170 READ AYe (I)

18e NEXT I

190 DEF USR0-VARPTR(AYe(0»
200 I - USR0(1)

10

:REM Machine language for
:REM ti.er routin... Not.
:REM byte rever.al to ••ke
: REM the order correct.

• Integer .rray for code
• Integer array for ti-.r data

• R••d the routin••
• into the array.

• Initialize routine .ddr••••
• Initializ. the fa.t ti.er.

The Computer Journal/lssue'26

Listing 5 continued

210 J% - 0
220 DEF USR1-VARPTR(A%(10»
230 J% - USR1(11.)

240 START% - &HEAFC
l

250 FOR I - 0 TO 8
260 8%(1) - PEEK(STARTI.)
270 START%- START% + 1
280 NEXT I

290 K% - 0
300 DEF USR1-VARPTR(A%(10»
310 KI. • USR!(II.)

• DEFINE THIS FIRST!
R.ad ti-.r routine addr••••

• Read the fa.t ti..r.

Addre•• of timer area.
• Copy ti ..r data into

data array.
• Update tiaer data addres••

• DEFINE THIS FIRST!
• Read timer routine addre•••

Read ti ••r again.

320 PRINT (JI. - K%)/307200. Elap.ed time in .econd••
330 REM 8(3-0) - REALTIME CLOCK HR,MIN,SEC,TENTHS
340 REM 8(6-4) • WALL CLOCK HR,MIN,SEC
3~0 REM 8(8-]) • COUNTDOWN TIMER IN TENS OF SECONDS
360 REM AND TENTHS OF SECONDS
370 PRINT 8%(3);81.(2)'8%(1),8%(0) • Print out Ti.er data.
380 PRINT 81.(6),8%(5>'81.(4)
390 PRINT 81.(8),81.(7)
400 END

The routines sketched above should provide easy access to the
on-chip timer of the HD64180. I hope you enjoy using them. •

I .~

..~

The Computer Journal/lssue,26 11

The SCSI Interface
Software for the SCSI Adapter
by Rick Lehrbaum, Vice President Engineering, AMPRO

+-------+-------+-------+-------+------------+----+-----+
: D87 : Dilb : DB:l : DB4 : DB3 : D82 : DBI : DB8 :

obtained represents the state of the SCSI bus data lines, DBO
through DB7, except that the bus lines are inverted relative to
the contents of this register. This register's bits are assigned as
follows:

Introduction
Assuming you have built (or purchased) the SCSI Adapter

described in issue 625, you probably would like to make it run.
That's the purpose of this issue's SCSI Interface article.

We'll look at software for the SCSI Adapter from two perspec
tives:

81 t 7 5 4 2
Btt _

(1) Simple bidirectional I/O, using the adapter as a parallel
port.

(2) A SCSI compatible I/O driver.

This article won't cover how to create a complete CP/M (or Z
System) "BIOS" - sorry, that is beyond the scope of this series
on SCSI! What we will cover is how to operate the 5380 SCSI con
troller, for both SCSI and non-SCSI applications.

Inside the NCR 5380
The first requirement in using the SCSI Adapter, in either SC

SI or non-SCSI applications, is to know how to use the 5380 IC to
manipulate the SCSI interface. The 5380 device is really quite
simple to use, and has a number of interesting features, in
cluding:

• 17 bidirectional I/O lines with 48 rnA current sink.
• Support for automatic handshaking.
• Support for SCSI bus arbitration.
• Compatibility with the ANSC SCSI specification.

The 5380 has 16 internal registers, normally addressed on the
SCSI Adapter as shown in Figure 1. These registers are directly
read or written by the Z80 CPU using the chip select to the 5380
(pin 21) under programmed I/O control.

Note that the addresses shown in Figure 1 are based on the
default board base address of 2OH. You can easily reconfigure
the board to a different base address by changing the connec
tions between the address decoder outputs <USA and USB) and
the chip selectlogic <U6).

What follows is a brief description of the function of each of the
5380's internal registers. Remember that the I/O addresses in
dicated are based on the default board base address of 20H. In
the 5380 register description, neither DMA nor interrupts will be
discussed. If you wish to implement either of those functions, ob
tain and study a copy of the 5380 Design Manual, available from
either NCR or AMPRO (for $10).

One other comment, before we look at the registers, is that all
of the SCSI bus signals are "active low," which means that their
logic levels are opposite to the contents of the corresponding bits
in the 5380 registers.

Current SCSI Data Register (20H) : IReading this 5380 register
allows you to observe the state of the eight SCSI interface data
lines. All you have to do is read the I/O port at 2OH, and the value

12

+-------.-------+-------+-------+------.-.-------+-----+

Output Data Register (20H): Writing to this register in the
5380 sets the state of the SCSI bus data lines <DBO through DB7) ,
providing that the "Assert Data Bus" bit of the Initiator Com
mand Register is set. If you write to this register when the
Assert Data Bus bit is not set, the register will hold your data but
not assert it on the SCSI bus unW the Assert Data Bus bit (in the
Initiator Command Register) is set at a later time. The Output
Data Register data bits are assigned as follows:

Bit 7 b 5 4 :J 2 I Bi.t •
.-------.-------.-------+-------+-------+------+------+-------+
: D87 : DBb : DB:l : DB4 : D83 : 082 : DBI : DB8 :
+-------+-------+-------+------+------+-----+-------+-------+

Input Data Register (26H): Reading this register returns the
latched - not current - state of the SCSI data lines. Data is lat
ched either during a DMA Target Receive operation when ACK
(pin 14) goes active, or during a DMA Initiator Receive when
REQ (pin 20) goes active. The DMA Mode bit in the Mode
Register (22H) must be set before data can be latched in this
register. This register may also be read under DMA control
using the 5380's DMA control lines. The contents of this register
are:

Bit 7 0. :i .. 3 2 Bit.
+-------+-------+-------+-------+-------------.------+------+
: 087 : 086 : DB5 : 084 : 083 : DB2 : DBI ': Dee ':
+-------.-------+-------.----:---.------+-----+------+-------+

Initiator Command Register (21H): This is a read/write
register which is primarily used to control the 5380's SCSI bus
interface when the chip is in the Initiator role. Most functions
are also available in the Target role. Two of the bits of this
register have different uses when the register is read or written,
so two charts are gIVen. These are as follows:

En t 7 b 5 .. 3 2 1 Bi t •
+-------+-------+-------+-------+-------+-------.------+----+
:A••.,..t : Arb 1n: Lo.t :Aa••,.t :A••.,.t :A.... t :As.ert :A• .-rt :
: ItST : Pro9 : Ar-b : ACI(: 85'1' : SEL : ATN : O.t. :
+-------+-------+-------+-------+-------+-------+------+-------+

&1 t 7 it 5 .. .3 2 1 8i t •
+----- --+-------+-------+-------+-------+-------+-------+-------.
:A....... t : T•• t : 01f4 :A••..,..t :A• ..,.t :Ae.... t :A...... t :Ae.-.rt :
: RST : Mod_ : En : ~ : BSv : SEL : ATN : O.t_ :
+-------+-------.-------+-------+-------+-------+-------+------+

The Computer Journal I Issue 1126

bits have a a different purpose. In Initiator Mode, the states of
the Assert MSG, Assert C/O, and Assert I/O bits must match the
actual state of the bus (which can be read in the Current SCSI
Bus Status Register), for data to be placed on the SCSI bus even
if the Assert Data Bus bit of the Initiator Command Register is
set. Also, in Initiator Mode, if the Assert MSG, C/O, and I/O bits
do match the bus state, then the "Phase Match" bit in the Bus
and Status Register will be set.

Current SCSI Bus Status Register (24H): This read-only
register allows you to directly read the state of 8 signals on the
SCSI bus. The bits are utilized as follows:

Re~d~ble Reglsters

Current SCSI O~t~

Initiator Comm~nd Reglster
Mode Register
Target Command Regist.r
Current SCSI Bus Status
Bus and St~tus Register
Input Data Regist~

Reset Parity/Interrupt

Writ~ble Registers

Address

2~H

21H
22H
23H
24H
25H
26H
27H

Addre.s
Ba t 7 b 5 81 t lit

Output Data Register
Initiator Com.and Register
Mode Registllt""
Target Command Register
Select Enable Register
Start Dt1A Send
St~rt DMA Target Receive
Start Dt1A Initiator Receive

211lH
21H
22H
23H
24H
25H
26H
27H

: RST : BSY : REg : ",sa : c/o : 110 : SEL : DBP :

Select Enable Register (24H): This write-only register is
used as mask in Target Mode operation to allow the 5380'5 built
in selection response logic to generate an interrupt. Refer to the
5380 Design Manual for more info.

8. t 7 b 5 4 3 2 1 Bi t "

.-------+-------+-------+-------+_._----+-------+-------+-------+
Figure 1

: 067 : Ollb : 085 : 08_ : 063 : 062 : DEc I : 060 :
+-------+-------+-------+-------+-------.-------.-------+-------+

: End : [>f"A : Part tv: Int.... - : Ph••• : Busy : 4TH : ATN :
: of : Requ••t: Error- : rupt : I"l.tc:h : ErrOf'" :
: 0ttA : Requ••t :

Bus and Status Register (25H): This read-only register
allows you to read two SCSI bus signals - ATN and ACK
which are not included in the Current SCSI Bus Status Register.
In addition, six 5380 status flags which are associated with the
optional use of interrupts are read through this register. The bits
of this register are utilized as follows:

As you have probably guessed, this register allows you to con
trol the state of the RST, ACK, BSY, SEL, and ATN bus signals,
and also to control whether the 5380 places its data on the SCSI
bus or not. Notice that bits 6 and 5 differ according to whether
you are reading or writing this register. (Refer to the 5380
Design Manual for details on the use of these bits.)

Here are two restrictions in using these bits to control the SCSI
bus:

81 t 7 b 5 - Eht ~

+-------+-------+-------+-------+-------+-------+-------+-------+
: Aa.-rt: ~aert: A•••rt: A••.rt:
: REQ : f'tSG : c/o : 1/0 :

:Block : r.rqet: £naol.:£n.ol. :£n.o1. :I'ton,tor: 0f'tA : Arbi- :
:P1od_ : t1ode, : P lty:P.rlty: EOP : 8SY : ""ad. : tt. :
: OHA : Check : 1nt : tnt: : : :

DBe-OB7
REQ,I"'tS8,C/D
110
SEL

81:udtrec:tl00Al 110 ltn••
Ae-2 <8 porta)

R.d'.... 't.
O.t. r,..".f.,. StroDe

Purpose

d.t.
.dd,.•••
control

Simple Bidirectional I/O
Have you noticed that the 5380 is really a glorified Parallel I/O

device (PIO), with a few special SCSI-related features? So let's
use the 5380 as a PIO. In this example, the bus we create will
have the following signals:

As mentioned above, the use of OMA and interrupts will not be
covered in this article. The "Phase Match" bit is handy, in that
it shows in a single bit whether the SCSI bus phase matches the
settings of the Assert bits (MSG, C/D, and I/O) in the Target
Command Register. The Phase Match bit is only meaningful
when the 5380 is in its Initiator Mode ("Target Mode" bit =0).

The Busy Error bit is set if the Monitor Busy bit in the Mode
Register has been set and if the SCSI bus BSY signal becomes
false. If this occurs, the 5380 output drivers all become disabled.

OMA Registers (25-27H): These are not really registers at
all. A write of one of these I/O addresses is used as a trigger to
start OMA in one of three DMA modes (Send, Target Receive, or
Initiator Receive). Refer to the 5380 Design Manual for more in
formation on the use of OMA.

Reset Parity Interrupt (27H): Like the "DMA Registers,"
this is not really a register either. A read of this address is used
as a trigger to clear a parity error interrupt.

Bat.

2

23

5

5

b

b

Bit 7

Blt 7

Mode Register (22H): This register contains many control
signals governing operation of the 5380. It allows you to place the
chip in either Initiator or Target mode, and provides control
over DMA and arbitration functions, parity, etc.

We won't go into the use of the bits regarding OMA, parity,
and interrupts, as these are not required for basic operation of
the SCSI interface. For our purposes, Bit 6 is the most in
teresting bit of this register, as it determines whether the 5380 is
in its Target Mode or if it is in Initiator Mode. Bit 0 starts the
chip arbitrating if you use that option.

Target Command Register (23H): This register provides con
trol over the bus phase control bits, REQ, MSG, C/D, and I/O,
and is similar in this respect to the Initiator Command Register.

(l) The 5380 must be in Initiator Mode (Mode Register, bit 6)
to be able to set the SCSI control bits ACK and ATN active on the
SCSI bus.

(2) If the 5380 is in Initiator Mode (Mode Register, bit 6). then
the data bus will not be asserted by the Assert Data Bus bit (Bit
0) unless the SCSI bus I/O signal is false (output from Initiator)
and the SCSI bus control signals C/O, I/O, and MSG all match
the contents of the Assert bits in the Target Command Register.

These bits can only be asserted by the 5380 if the "Target
Mode" bit in the Mode Register is set. In Initiator mode, these

This is a very basic configuration, and is suited for many sim
ple interface applications, for example the direct connection to a
UART or similar device. Many other possibilities exist!

The Computer Journal/Issue 1J26 13

OPTIONS

Status RefiI ••t
Control R..,i .t....
Data Reql.t....
Data R..i.t....

St.tu. Reqi .t....
Control Reqi .t....
Dat. R.qi .t....
Dat. A'wql.t

A:
Fl....
.... It•
FI..d
WP't t _

UART Por"t 9:
82 ReM
82 Wr,t_
_3 Fleed
_3 It.

Iloop until charact. available
'addre•• of por"t A .tatu. r-.ai .t....
,op.....t ian Nt 1 J b•• r ••d. so REg • 1
' ••t the SEL bIt in the InItIator co-.nd ~i.t....
I tot the O.t. T".".f~ St"eb.
I"••d the d.t. bu. to ... if the ROA bit I •••t

lINH Port....
-I_ I

A,_
ee
A,4
ICR
CBO
_2
aETCHM

BETCHAR:
..... 1
ORI
..... 1
OUT
IN
AHI
JZ

INIT538e: ,Inlt.alize the :53811I to Target MId. for" ••_ of u..
!"tVl A••
OUT TCR .CI••r T.v'9_t eo...r.d Register
OUT lCA ,CI ••r Initiator Ca.-and R-eJl.t
""1 A.4eM
OUT I'1R IInit-.-liz. t f'Iode R-';later to T~9.t I'tocte
RET

And assume that the Status Registers of each channel of the
UART are used in this manner:

Where "ROA" means "Receive Data Available" and TBE
means "Transmit Buffer Empty". The other 6 bits have some
purpose, of course, but we'll keep this example simple!

Firstly, the following code might be used to setup the 5380 for
use in Target mode. It is used to clear all register bits to zero ex
cept the Target Mode bit in the Mode Register.

• Bus arbitration.
• Disconnectlreselect.
• "Pseud<Hlma."
• Interrupts.
• Hangup protection.
• SCSI message system.

Bit 7 b 5 4 3 2 Bit _

+-------+-------.-------.-------+-------+-------.-------+-------+
: : : : : : 'FlDA:TBE:
+-------+-------+------...-------.-------+-------+-------+------+

Isn't this a simple example! But it should be enough to give
you the general idea how easy it is to use the 5380 for simple
bidirectional I/O, You can probably improve on this in many
ways, especially if the device you wish to talk to has a different
arrangement of control signals, address modes, etc.

Oh yes, one more comment: the above code wasn't actually
tested with a real device, so don't take a hatchet to your har
dware if it doesn't work the fIrst time! The routines above were
only provided as an illustration. It's your project - you do the
programming!

XRA A Icl ••" the O.t. T".n.f Stral:w
OUT rCFI
f'rVI A,l ••dd"••• of port A d.t. "evi.t....
ORI H lop.....tlon wi)) b•• ,.••d
OUT rCR
IN CSO
FlET

In this example we will use the 5380 in Target Mode, which
turns out to allow easier manipulation of the device for non-SCSI
bidirectional I/O.

Let us assume you are interfacing to a UART which has ports
defined as follows:

A Sample SCSI Driver
Figure 2 provides a sample SCSI driver. This particular

driver is somewhat simplified, and is intended to give you the
general idea of how to operate the SCSI interface in general, and
the 5380 SCSI IC in specific. Among the features not included
are:

Next, if our mission is to read characters from the UART, we
could use the following code:

SCSI/lOP" - pemllts connection of
oll-the-shelf STD bus 'ndustnall/O
interfaces (onolog, digotlll, seriol,
disploy, power control, etc.)

ElCPAHSION/116" - odds 1M key
options to Little _dl 186

• 5121< IlAM
• 8087 co-processor
• 8oltery-Ood<ed Real TIme CJodc
• 2 RS232/422 sync!osync: serial

po<lS

• I/O exponSlOlI bus

(03166 20 20, nx 43558 UK: "'NiJAA
SYSTEMS L11l.• 0296 355", nx 837427
FlHLAHD: SYMMEilllC OY. 358-0-585-322,
nx 12'394~ EGAl. PLUS,
(1 I 4502-' SOD, nx 620893 ISAAEL: AlPHA
TERMl-.5, L11l.• (031 49-'~5, nx 34'667
SWIDfN, ABAKT'" (D81 54-20-20. nx 13702
USA. CON!ACT AMPRO COMPUTERS IN(,.

8Wlt,~ corp.; 80186~.1nt£t,Cotp,.

• Only 5.75 x 7.75 Inches, mounts
directly to 0 5-1/4' dlSll dnYe

• Power Requirement • 5VOC at 1.2Y.;
.12VOC ot.05A; On t>oard -12V
converter

• SCSl/PUJS" multknaster I/O
_bus

• Sol'twere Included,
• PCWS compolible JlOM.8lO5 boots

DOS 2.xond 3.x
• Hord DISIl support

[

..-mHA: FACTOIllAl, SA, 41-0018
nx 22408 AIJ5nAUk ASP
MlCROCOMPUT£RS. (6131 5l»<l628,
nx 36587 _ CENm ELECTllClNIQUE
LIMPEREUR, (041 I 2~S-4'. nx 4262,
-...zLC~COMPUTADOIlES
LTDA. (41 1262-'939. nx 416132 CAHAllk
T1lJ.M, (604I 438-90' 2 D£HMARK, OANlllT,

Little Board/186™ ••• ~ $495
High Perfonnance, Low Cost PC-DOS Engine

IIootIIIM PC-OOS

!i (not included)" ~~_.
~~~
/~-~

~~

I'IlOJECT 1IO.UD/116·· • odds 25
SQUal'c lnch«:s of IMrc wrap
prolOl)pe oreo WIth bullered ond
pre-oecOCled 80186 bus ,ntertoce
lor ullle Boord/186

YID£O RAM EMULATOR" -oIlows
use ot sortw«e t:hat 'M'ltes to
dl5PlOY controller ''VIDEO 1lAM"

~I=I=u:::::I
COMPUTERS, INCORPORATED

67 EBt £1Idyn Ave, 0 __in VIew, CIt. 94041 0 (415) 96l1-ftJO
TU£X 49403010 FAX (415) 9M-l04l1

• Three Dmes the COMPUTlNG POWER of
oPC

• Dor.. ond File ComPODbie WIth IBM PC,
runs"MS-DOS genenc" programs

• 8 MHZ 80186 CPIJ, DMA,
CounterITIltle'",;, 128/512K IlAM zero
wort sr..tes, 1'~ 128K EPROM

• MlnilMICro Floppy Controller
( 1-4 Dnves, Slngle/Doubie Densrty,
1-2 SIded, 40180 trOCl<)

• 2 RS232C Serlol Ports (50 ·38,400
baud), 1 CenTrOniCS Pnnter Port

The Computer Journal/Issue 1'26



btorage location for target IU
conlainb addrebb of starl 01 dala bufler
containb addrebb 01 blarl of command buffer
btorage location for blurag" bYle
sturage local ion tur mebbage byle

I
2

L
I
I

ds
db
db
ds
db

target
datptr
cmdplr
slatus
mebsage

Storage iucations

nc r rs t equ 100UOUUUb
ncrbby "qu UIOOUUUOb
ncrr"q "qu OUIUOUUUb
ncrmbg "qu UUulOUUUb
ncrcd equ UUUUluUUb
ncrio "qu UUUUUIUUb
ncrbel equ UUUOUUlUb
ncrdbp equ UUUUUUUlb

The following are f lag masks for the Currenl SCSI !lUb Slatub
regibter, al port 24h

ncrphm equ UUUUIOUUb

The following b a f lag mask for the /lUb and Status
regibter, al port 25h

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*
*

Sample SCSI Driver

*
COPYRIGHT (C) 1984,l985,l9Ho

AMPRO COMPUT~RS, INC.
All rights reserved.

* * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *
**

*
*
*
*
* * * *

*** NOTICE ***

This driver is provided for non-commercial,
educational purposes only, and may not be
used for commercial purposes in full or in
part without express written license from
AMPRU Computers, Incorporated.

This driver is provided without warranty of
any kind, either expressed or implied.

This sample driver contains an example
of how to utilize an ncr 5380 scsi controller
used to communicate with sc~i target devices.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Figure 2-t
;;r
III

~
3
"0
C

m...
C
o
c
3
!!!.

III
III
C
III

"*'
::i

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *** •• *** •• *** •• *•• *.**** •• *.**.*********.***************.***.*

; base address of ncr 5380

************
,
ncrbase equ 20h

MISCELLANEOUS EQUATES AND MASKS ****************
************ POWERUP OR RESET 53HU INITIALIZATIUN ***********

,
; 53HU input-only, and input/output registers follow:
,
ncrcsd
ncricr
ncrmr
ncrtcr
ncrcsbs
ncrbs r
ncridr
ncrrpi
ncrdack

equ
equ
equ
equ
equ
equ
equ
equ
equ

ncrbase+O
ncrbase+l
ncrbase+2
ncrbase+3
ncrbase+4
n'crbase+5
ncrbase+o
ncrbase+7
ncrbase+8

current scsi data register
initiator command register
mode register
target command register
current scsi bus status
bus & status register
input data register
reset parity/interrupt
dack pseudo-dma

Thib routine should be used on system resel to clear all
internal control bits in the 53HU

ncrinit:
xra a
uut ncricr
oUl ncrmr
uul ncrtcr
uul ncrser
ret

**************************************************************

53HU output-only registers follow:

"
....
U1

,
ncrodr
ncrser
ncrods
ncrsdlr
ncrodir

equ
equ
equ
equ
equ

ncrbase+U
ncrbase+4
ncrbase+5
ncrbase+o
ncrbase+7

output data register
select enable register
start dma send
start dma target receive
start dma initiator receive

************ OPTIONAL SCSI BUS R~SET ************************

Thib routine is u.sed when a SCSI bus rebet Is required,
which is nut a bad idea tu du after system reset

,
rctiet:

mvi a,lOUUUUUUb
out ncricr
;r"bel pulse of 25 microbec min needed

1ii .. <lili ~ ~'



••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

; Watch for busy loss and exit if this occurs. That
; means the Target is finished with the transaction.

phi:
in ncrcsbs ; check for BSY active

...
00

mvi a,20
rstl:

dcr it

jnz rstl
mvi a,UUUOOOUOb
out ncricr

delay:
lxi d,U

rstlop:
dcx d
mov a,d
ora e
jnz rstlop

in ncrrpi
ret

reset interrupt indicator

UlUV Dta

ani ncrbsy
rz

mov a,b
ani ncrreq
jz phI

mov a,b
ani UOOll100b
rar
rar
ani Ofh
out ncrtcr
mov a,b
ani OOOlllOOb

if busy drops, get out

is REQ active?
wait for REQ active
update MSG, C/O, 1/0 in 5380
check current phase

Begin SCSI access by selecting the target device

•••••••••••• ENTRY POINT FOR SCSI DEVICE ACCESS •••••••••••••

•••••••••••• MASTER BUS PHASE PROCESSING ROUTINE ••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

get ready to jump to applicable
routine

data in phase
set data transfer pointer to data block
use scsi read routine

.; data out phase
set data transfer pointer to data block
use scsi write routine

mov eta
mvi d,O
lxi h,pjtab
dad d
pchl

This jump table is used to jump to a routine for each
poss t h ll' SCS 1 blls phase

For each bus phase, some preparation is done and then
a jump is made to a read or write routine

PJt.lh:
jmp phascU
nop
jmp phasel
nup
jmp phase2
nop
jmp phase3
nop
Jmp phase4
nop
jmp phase5
nop
jmp phaseo
nop
jmp phase7

,
phaseO:

Ihld datptr
jmp wscsi

,
phasel :

Ihld datptr
jmp rscsi

wait for Target to respond with bsy
get current scsi bus status
look at the bsy line
loop till busy active
Target is selected, so clear sel

and release data bus
then see what the Target will do

set all Assert bits in Target
Command Register to O. This is
in preparation for phase logic

get target 10 from memory
and put it in data reg

set Assert Data Bus and SEL bits

Ida ta rget
out ncrodr
mvi a,OOUOO101 b
out ncricr
waltblp:

in ncrcsbs
ani ncrbsy
jz wartblp

xra a
out ncricr
jmp phase

phase:
xra a ;reset NCR ctrl registers
out ncrmr
out ncricr

The Target will indicate what needs to be done
by the values of MSG, C/O, and 1/0 when it sets
REQ active. So, wait for REQ to become active.

Now wait for the target device to respond, then see what
phase it is requesting.

,
select:

xra a
out ncrtcr

III
III
c:
II)

~
N
m

-i
;:r
II)

~
3
"0
S.
~
c
o
c:...
::J
!!!.



........................................."." .

currently unused phases
phase4:
phase5:
phase6:

ret

~eneralized scsi read routine

•••• " ••".".". GENt-:I<ALIZEO SCSI REAO ROUTINE ."."•••• "."••• " •••

exil if bsy ~oes away
check tor req

exit when phase changes
check status of usy

k.eep an eye on phase and bsy
check for phase mismatch

Loop unt i I req or phase change
or luss at bsy

r".:.Id the dala, store it
in nc ['csd

rsc~ i :
; wait lur req.
in ncrbsr

ani ncrphm
jz phase

in llCrCboUti

ani ncrbsy
JZ phase

in ncrcsbs
ani ncrreq
jz rscs i

status in phase
set data transfer pointer to status block
use scsi read routine

message in phase
set data transfer pointer to message block
use generalized read routine

command out phase
set data transfer pointer to command block
use scsi write routine

phase7:
lxi h,message
jmp rscsi

phaseJ:
lxi h,status
jmp rscsi

phase2:
lhld cmdptr
jmp wsctli

(jI
(jI
c
CD

~

-i
:3'
CD

~
3
"0
C
;-...
L
a
~
:l
!!.

i •• " ••••••• • •• GENERALIZEO SCSI WRITE ROUTINE •••••••••••••••••

walt tor req to go away

set ack

gel more data untiL neW phase or
or loss uf busy

, clear aek

muv m,d
inx h
lIlV! a,lJlJULUUlJlJb
out ilL r ll: l'

noreq:
ill Ilcrc::)bs

.1.111 IlLCrcq

jnz Itu('l:'-I

Xf...l d

uut Ilcri~r

Jmp rscs i

*******.******************************************************

un

assert data bus

exit when phase changes
check status of bsy

set ack to tlhow target the data
itl available

wait for req, keep an eye
phase and bsy

check for phase mismatch

exit if bsy goes away
check for req

loop until req or phase change
or loss of bsy

and give it to the 5380
put the data in the output data

register

in ncrbsr
ani ncrphm
jz phase

in ncrcsbs
ani ncrbsy
jz phase

in ncrcsbs
ani ncrreq
jz wscsil

wscsi:
mvi a,l
out ncricr

wscsil:

i fetch the data
mov a,m
out ncrodr
inx h
mvi a,OUU10000b
out ncricr

waitreq:
wait for req to go away
in ncrcsbs
alii ncrreq
jnz "'''' Il req

**************************************************************
......

A r ••. 1

I III l I ~, I l, r

}11I., "'1:11\ t~ 1 1

wlll'll rcq uccurs, LIL'dr c.ll:k to
"I",,,, the l,orgel ",,' have thl' d.lla

• h"lh1 lR"r .. · lI.J.l.i ul\tll ph,l~C ~h.lI)gL's

ur bsy goes away

$; <i :i;.



You would probably want to add some or all of these features
in an actual driver. As they say, "These enhancements will be
left as exercises for the student!"

The sample SCSI driver is structured as follows:
Miscellaneous Equates and Masks: The 5380 register port ad

dresses, along with bit masks used by the code for testing and
setting various flags and conditions.

Powerup or Reset 5380 Initialization: This routine should be
used to initialize the 5380 on powerup or reset. It disables all out
puts from the chip, so that the SCSI bus is in a free state, in
preparation for later usage.

Optional SCSI Bus Reset: This routine can be used if you want
to reset the SCSI bus. Use it with some care, as many SCSI disk
and tape controllers go through lengthy reset routines when they
detect an SCSI bus reset. Some even respond in ways that act
like error conditions!

Entry Point for SCSI Device Access: This routine is the main
entry point of the SCSI driver.

Muster Bus Phase Processing Routine: This is the "heart" 
or perhaps more properly the "brains" - of the SCSI driver.
This section of the driver operates like a state machine,
regulating the operation of SCSI interface.

Generalized SCSI Write Routine: When data is transferred for
any reason (Command, Data Out) to a Target it is handled by
this routine. Here is where the REQ/ACK handshaking is per
formed. During the process, the code watches for either a
change in bus phase <indicating the current data transfer is
complete) or a loss of bus busy (indicating the current SCSI bus
operation is complete).

Generalized SCSI Read Routine: Same as write routine, ex
cept used for all transfers of data from a Target (Status, Data
In, Message In).

~~
CALENDAR/CLOCK

$69 KIT

:~:.-..",.... NOW WIT
~ OATE STAMHpFILE

ING!
• Works with any Z- 80 based computer.
• Currently being used in Ampro, Kaypro

2, ,. & 10, Morrow, Northstar, Osborne,
Xerox, Zorba and many other computers.

• Piggybacks in zao socket.
• Uses National MM58167 clock chip. as

featured in May '82 Byte.
• Battery backup keeps time with CPU

power off!
• Optional software is available for tile

date stamping. screen time displays.
etc.

• Specify computer type when ordering.
• Packages available:

Fully assembled and tested $99.
Complete kit $69.
Bare board and software $29.
UPS ground shipping $ 3.

MASTERCARD, VISA, PERSONAL CHECKS,
MONEY OI~DERS & C.O.D.'s ACCEPTED.

N. Y. STATE RESIDENTS ADD 8% SALES TAX

KE~MORE

COMPLTER
TECH~OLOGIES

1'.0.80.835. Kenmore.\e... \ork 1-1217 17161 "'77·0617

COMPUTE~5NCO~PO~ATEO

How it Works
The SCSI driver is a unique piece of code in that it functions

like a software "state machine."
Before you call the driver (at label "select:"), you must:

(1) Create a command parameter block (CPB) somewhere
in memory.

(2) Store a pointer to your CPB in location "cmdptr."
(3) Store a pointer to your data buffer in location "datptr."
(4) If the operation will be a block write, move the block of

data to be written into the data buffer pointed to by "datptr."

~-t= _.. ~~_

BEARELEC;~~7c;;
SAVE 10% on AMPRO

INTRODUCTORY SALE THROUGH DECEMBER

CALL NOW· CALL COLLECT (415) 376-0125

BEAR ELECTRONICS. P.O. Box 61. Moraga. CA 94556

ALL AMPRO PRODUCTS READY FOR IMMEDIA TE SHIPMENT

SOME EXAMPLES' (Other AMPRO products available
• at Slmolar saVIngs.)

MODEL DESCRIPTION REG. PRICE DISCOUNT PRICE

18-1 lIttl. Boord SBC 249.00 224.10
18-2 lIttl. BoorIllPLUS sac 289.00 260.10
2".·2 Linlo Boorlll 186 sac _,00 445.50
2"'·P Proto Board 179.00 161.10
2VR 111080 RAM Emulator '9500 175.50
3"'·' STO Bus SC51 I/O Boord 119.00 107.10
12211 CP/M Systern wl2 Dnves 99500 895.50
222 PC·OOS System wl2 DrIVeS '295.00 1165.50
32' Expandable PC-OOS SYS1etn 139500 1255.50

Some r_nc.1IOnS~ 10 aedlt and *0- qua~
bty OfOllrS. CIIII tor It'lfonTlabOn. AIow 2 - 3 WMkJ
tor 122A. 222 or 321 systems.

PO'.

c=::J.'-',

~.

Pi.... odd $300 1$8 00 "" ......".) tor ups S/l'PO'ng & ".,,,,,"..
Callfornll r8Slderns add aporopnlte sat_ tax

CHECKS

Typically, the data buffer is 512 bytes, but this depends on the
type of SCSI Target device you will be using. The command buf
fer must be whatever size your command parameter block
requires, which is dictated by the command set of the specific
SCSI Target device you are going to talk to. It is usually 6 bytes,
but can be longer.

Once the driver is called, the SCSI interface is no longer being
controlled by your driver, but is actually responding to the
signals generated by the SCSI Target itself, as indicated by the
state of MSG, C/O, ,vO, REQ, and BSY. The listing provided in
Figure 2 contains lots of comments which should explain how
the 5380 is being used. Read the driver over several times before
you give up trying to understand it!

When the driver returns to the calling program, the data
passed by the command is located in the data buffer at the
location pointed to by "datptr," and the status byte from the
command is in the location called "status." You can determine
whether the operation was successful or not by examining the
status byte. Congratulations - you are now a SCSI user! •

18 The Computer Journal I Issue 1#26



Z sets you free!
.",. Z-System U..-. Gull»
For those who are not technically inclined. This
is an excellent tutorial-style manual filed with
examples of how to use the power of ZCPR3I
Z-System most effectiVely. written by two
highly experienced Z users. (One user is a
lawyer. the other a writer; this proves that
anyone can use Zand benefit from it.)

ZCPR3: The UbrarWs
The extensive documentation for the libraries
of ZCPR3. SYSLIB. Z3UB. and VUB. A must
for any serious user of these programming
tools. Loose-leaf notebook styte; easy to work
with as it will lay flat on your desk.

THERE'S MORE
We couldn't fit aD Echelon has to offer on a
single page (you see how small this type is).
We haven't begun to talk about the many
additional software packages and publications
we offer. Send in the order form below and just
check the ·Requesting Literature· box for more
information.

WHO WEARE
Echelon is a unique company, oriented
exclusively toward your CP/M-eompatible \
computer. Echelon offers top quality software
at extremely low prices; our customers are
overwhelmed at the amount of software they
receive when buying our products. For
example. the Z-eom prodUct comes with
approximately 80 utility programs; and our
TEAM III communications package runs to a
fuB megabyte of files. This is real value for your
software dollar.

ZCPR3
EcI'IeIon is famous for our operating systems
products. ZCPA3. our CP/M enhancement,
was written by a software professional who
wanted to add features normally found in
minicomputer and mainframe operating
systems to his home computer. He succeeded
wonderfully. and ZCPA3 has become the
environment of choice for ·power" CP/M users.

Multiple Commands per Line
You can easily use multiple commands per line
under ZCPA3. Simply separate the individual
commands with semicolons. For example, ·PIP
B:=A:·.TXT:STAT B:·..• will copy files and then
show you the STAT results.

User-Programmed menu systems
ZCPA3 comes with three different menu
systems that you can use to create custom
menu-driven "front ends· for your computer.
This is especially useful for setting up menus
for your spouse or co-wort<ers to use the
computer, as they never have to see the A>
prompt. All they have to do is press a single
key to run any single or multiple CP/M
programs. and when the task is done, control is
automatically returned to the menu (ordinary
CP/M menu programs cannot do this).

Extended Command ProcessIng
When you type a command under CP/M. it will
only look for the program in the current drive
and user area ZCPA3 gives you more flexibility
by additionally searching other disks and user
areas when resolving commands. You have full
control of this function. called the PATH. This is
probably the one element of ZCPR3 that is
missed most if you retum to ·ordinary· CP/M.

Also. ZCPR3 supports the capability of
grouping all your commonly used utility
programs into a library file (•.LBA). This is great
for systems with a small number of directory
entries per disk, as the library file only uses
one entry. " also has the advantage of
reducing disk space requirements for a given
set of programs. allowing you to put more
programs on a disk. And the programs in the
library file are invokable from the command line
just like any other program not in the library.

Other FeatuntS
There's much more to ZCPA3. like named
directories. online help system, etc.• but it
can't be described on one page. If you would
like more information. consider the books
shown below.

Z·SYSTEM
Perhaps the only shortcoming of ZCPA3 is that
it is not a complete replacement for CP/M. This
is what the Z-System does. The Z-System
contains ZCPR3 and an additional module,
ZAOOS, and is a complete replacement for
CP/M. ZRDOS adds even more utility programs.
and has the nice feature of no need to warm
boot (AC) after changing a disk. Hard disk users
can take advantage of ZADOS ·archive· status
file handling to make incremental backup fast
and easy. Because ZROOS is written to take
full advantage of the zao. it executes faster
than ordinary CP/M and can improve your
system's performance by up to 10%.

INSTALLING ZCPR3IZ-5YSTEM
Echelon offers ZCPA3IZ-System in many
different forms. For $44 you get the complete
source code to ZCPR3 and the installation files.
However, this takes some experience with
assembly language programming to get
running, as you must pertorm the installation
yourself.

For users who are not qualified in assembly
language programming, Echelon offers our
·auto-install· prodUcts. z-Corn is our 100%
complete Z-System which even a monkey can
install. because it installs itself. Z-Com
includes many interesting utility programs. like
UNERASE, MENU. VFILEA. and much more.

Echelon also offers "boatable· disks for some
CP/M computers. which require absolutely no
installation. and are capable of reconfiguration
to change ZCPA3's memory requirements. At
present. only Kaypro computers have this
option available.

BOOKS
We sometimes joke around the office that we
are really in the business of publishing. not
selling software. We have books. Lots of
books. We have to have lots of books.
considering how powerful our software is and
the large quantity of different packages we
offer. Here are our best sellers:

ZCPR3: The Manual
This is the ·bible· for the ZCPR3 user. An
exhaustive technical reference. bound
softcover. 350 pages. Contains descriptions of
each ZCPA3 utility program. a detailed
discussion about the innards of ZCPR3. and a
full installation manual for those doing their own
installation. You could order it from B. Dalton.
but why? Get it from us.

nem Name
1 ZCPA3 ConI _ Pad<age

2 ZCPR3 Ublilles Pad<age
3 ZJ-Dot·Com (Auto-Install ZCPA3)
4 ZJ-DoI·Com "ear. Minomum'
5 Z-Com (Auto·lnslaI Z·System)
6 Z-Com·Bate MirWnum'
12 PUBLIC ZRDOS P\Js (by ilseffl
13 Kaypro Z·Sysrem
~Disk

20 ZASlZlINK Macro~
andLriar

21 ZDM Debugger tor 808G'Z8OIH064180
cPU's

22 Translators lot Assemlll8t'
Soutce Code

ZI REVAS3l4 0"".. ,_
24 Speelal-

Ilems 20 1Ivougto ZI
25 0SD-80 Full sa-.

e..e.-
27 The lbanes. SYSUB, ZJlS.

and VlI8
28 Gtapnoc:s andW_

UlraIies
29 Sped8I-

ItemS 27. 28, and 82
40~ Reconler

lOP (IIOR)
41 Elad<otound PnnIer lOP
(~)

42 Progam~~ lOP (PKeyI
43 SpeNI-

Ilems 40 1Ivougto 42
60 OISCAT

Disk calaIoging "'"*"
61 TERM3

Convnunocalions sv-n
64 Z·MsQ Message Harding

Syslem
81 ZCPRI: The ........

bound. 350 pages
82 ZCPR3: The~

310_
83 Z.f4EWS~,

1 yr subsciption
84 ZCPR3 McIIOPs50_
85 ZRDOS PIogi.,.,...._35_
88 Z~ u.r". GW*

80 page MDnaI

'Includes ZCPR3: The _

PTice
$44.00 (3 disks)'
$89.00 (9 disks)
$99.00 (6 disks)"
$49.95 (1 dISk)

$119.00 (7 disks)'
$69.95 (2 disks)
$59.50 (1 disk)

$69.95 (3 diskS)

$69.00 (1 dISk)

$50.00 (1 disk)

$51.00 (1 diSk)
$90.00 (1 diSk)

$150.00(4_)

$129.95 (1 diSk)

$69.00 (8 disks)

$49.00 (1 disk)

$129.00 (9 disks)

$39.95 (1 diSk)

$39.95 (1 diSk)
$39.95 (1 diSk)

$89.95(3_)

$39.99 (1 diSk)

$99.00(6_)

$99.00 (1 diSk)

$19.95

$29.95

$24.00
$9.95

$8.95

$14.95

-------------- ------------- ---------------
[=il Ecbelon, InC.
88S N. San Antonio Road, Los Altos, CA 94022 USA
415/948-3820 (order line and tech support)
NAME _

ADDRESS _

TELEPHONE DISK FORMAT _

o REQUESTING LITERATURE

The Computer Journal/Issue 1126

ORDER FORM

Payment to be made by:
C Cash
C Check
C Money Order
C UPSCOO
C MastercardlVlSa:

,----------Exp.Oate _

Califomia residents add 7% saJes tax.
Add $4.00 shippingihandling.

ITEM

Subtotal

SaiesTax

ShippingJHandling

Total

PRICE

19

,~



Lett~n

(Continued from page 3)

Responu to ~Uers in ~25

In response to D.E.'s letter on CP/M
and tM 6502. there are many reasonS
why CP/M has not found a home on the
6502 processors. The first consideration
is the fact that most systems using the
6502 microprocessor are low end con
sumer mactunes. These machines, owing
to their cost. make no effort to adhere to
any indu.'ltry standards other than their
own. The mere mention of the 6502
processor places the machine in the,
"under S500 market," category.

CP/ M s a disk based and disk handling
program. What format will the 6502
based system use for its disks? The pur
pose, other than just to do it, to im
plement a CP/M compatible system
would be to access the wealth of software
available for this system. Just for the
sake of discussion, let's assume we chose
a popular disk format. Most existing 6502
systems use serial, or other odd way of
communicating with the disk, and its
controller. This is slow, defeating the
purpose of disk storage, though it may be
faster than a tape storage system. The
one nice thing about the 6502 is that it
uses direct memory accessing for I/O
functions. It would not be difficult to add
a disk controller chip. The next thing we
need to do is replace the existing
system's monitor ROM. A "monitor" is
similar to a BIOS. It handles all system
input and output. We now have the cost of
the disk controller, the new ROM, and
can add two disk drives, their enclosure,
and power supply. I doubt the existing
system could provide enough power to
run disk drives. They also require a 12
volt power source. At this point we
require-more than the original cost of the
system to interface with a technology
essentially obsolete in the consumer
market.

A CP/M type operating system could
be written for the 6502. But to what pur
pose? Where is the market? Where is the
interest in such a system? Economically
we should think of such a project design
as a new design, not an add-on. A con
sumer system would compete with the
giants Commodore and Atari. The
system would require a specialized
market. The real death of the idea of a
6502 based CP/M compatible system is
one of primary economics, not really a
technological one. While the 6502 is still
the fastest 8 bit processor in a relative
setting, the processor would be spending
most of its time translating 8080 and ZSO

20

opcodes into something it could under
stand.

Systems such as the APPLE allow the
internal bus to be captured by an exter
nal processor. In this case all that is
required is to write a BIOS capable of ac
cessing the internal device handling
structure. The APPLE systems use
single sided disks. Have you tried to
locate single sided disk drives lately?

The grass is always greener in the
other technologies. I have seen very nice
CP/M systems selling for $200. lacking
only a terminal to be put on line. The 6502
was king in its day, and now has a limited
use. It is in the same condition as CP/M.
There is little logic in application of one
obsolete technology upon one even more
obsolete. There are many sentimental
reasons for doing so, but few practical
ones. The primary concept is the reality
that there just isn't enough interest in
these technologies. This is why the
various emulators for 6502 machines are
not available any more - no one is in
terested in them on a scale to make the
expense and effort profitable.Progress is
seldom welcome. It often means we have
to abandon old friends. There is much
truth in the concept of, "Once you under
stand something it is obsolete."

Editor's note: There have been CP/M
cards for the Apple II on the market, but
I'm not sure how long they will continue
to be available. BCE (1-800-545-7447) is
liquidating the Appli-Card with CP/M
2.2, 6MHz ZSOB processor, 70 column
dispaly without an 80 column card (or 80
columns with an 80 column card), and in
cluding Wordstar Professional for only
$79! This requires programs on special
Apple CP/M format disks, or programs
downloaded from BBSs. I have an adap
ter card which runs standard CP/M 8 in
ch drives on my Apple II+, but I no
longer use it. Apple lIs used to be one of
the largest CP1M markets, but I think
that it is dead commercially. It's a good
deal for someone who still uses their Ap
ple, so get a card from BCE while they
still have some left (1 think I'll get one
just in case I want to use my Apple for a
control project> . _

As for J.T.'s S-1oo Hard Disk problems,
the reason the formatting utilities and
BIOS will allow you a maximum of eight
megabytes per logical drive is based in
neither of these areas. CP/M is not
capable of handling more than eight
megabytes per drive. ZRDOS, and other

M
o
V
I
N
G

?
•

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

Please allow six weeks notice. Thanks.

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms.
but these registered trademarks are
the property of the respective com
panies. It is important to acknowledge
these trademarks as their property to
avoid their losing the rights and the
term becoming public property. The
following frequently used marks are
acknowledged. and we apologize for
any we have overlooked.

Apple II. II + , IIc. IIe. Macintosch.
DOS 3.3, ProDOS; Apple Computer
Company. CPtM. DDT, ASM. STAT,
PIP; Digital Research. MBASIC;
Microsoft. Wordstar; MicroPro Inter
national Corp. IBM·PC, XT. and AT;
IBM Corporation. Z-80, Zilog. MT
BASIC, Softaid. Inc. Turbo Pascal,
Borland International.

Where these terms (and others) are
used in The Computer Journal they are
acknowledged to be the property of the
respective companies even if not
specifically mentioned in each occuren
ceo

The Computer Journal/Issue #126



••

•

.~

"

..

'7295 !

'7295

COMCAlC

MATRIX MAGIC

! •

'7295

REPORT WRITING
'9795 :

1

'7295

realities, and as with the concept of
multiple realities, travel can be tricky.
Generally what is done is to reserve a
portion of memory which is common to
all sets of memory devices, called
"banks" to serve as a common point
while the switching of banks takes place.
The schemes for jumping from one
reality to another are many and varied.
The concept we need to look at is that one
set of memory devices is replaced with
another in the same memory space, or
reality. Each bank may contain different
programs and data.

So, banks of memory share the same
space, but are considered virtual
memory, within the addressing
capabilities of the microprocessor. I am
not real fond of bank switching. If the
system is to support 512K why don't they
just add more address lines instead of
trying to be cute? Most often it is done to
save adding pins to a chip. Heaven forbid
that chip technology might violate a
standard of any kind, especially that of a
two cent socket into which a $12 chip
would be placed. Actually, there are
many reasons for bank switching beyond
expanding the addressing limits of a
given microprocessor. Justifying them is
another thing. Anyway, virtual memory
is always there and totally accessible by
the microprocessor, banked memory
systems share virtual memory space at
different times.

The term "interleave," on a hard disk
is the same concept as the term, "skew,"
on a floppy disk drive. It is a common,
though not universal, practice not to
place related sectors consecutively upon

-:' .....

ACNAP

'7295

LOCIPRO

SPP

STAP

r-fftC£ '\ AFFORDABLE
I~ CATALOG AND i ENGINEERING

I, SOFTWAREAPPUCATIONSGUIDE I CP/M SOFTW'Aft£ TRSDOS
'-::=====~-::====:/ MSDOS MIU; PeDOS

( ANALYSIS "( CIRCUIT DESIGNY-G-RAPH--'-CS-~I MATHEMATICS 1
XFER '7295 . ACTFll '7295 I pop '7295 'TEKCAlC \7295 i

''''',.. ".-,',..,~. ii, ~o,
'7295

i'7295

travels. The first two states are, "on,"
and "off." These states represent the
binary "high," or +5 volt state, and the
"low" or near +0 volt states respec
tively. ~ow then, if these were the only
states a device could have then each
device would require its own bus, or
there would have to be some other way to
coordinate traffic. All roads begin and
end, after all, at the CPU. This "other"
way implements the "tnird state." In the
third state the outputs of a device are
disconnected from the common bus
structure. The CPU can then "shut up" a
device by setting a pin on the concerned
device, allowing another device to speak
to it over the common microworld high
way system. This concept directly ap
plies to memory devices. Were it not
available we would, in theory, write a
byte of data to one memory cell, or ad
dress, and that value would be written in
to every cell in the device. One nice thing
about the computer world is that any
concept, in order to be valid, must be
universally applicable. If we can use an
additional line to make a single output,
device full of outputs, disappear from the
bus structure, then we can make groups
of devices disappear - magic.

In "banked" memory systems there
may be 128K of memory, but only 16 ad
dress lines. In these systems two sets of
identical memory chips are installed. A
ROM may also be installed. Using a
separate, nonaddress line, or one of the
upper address lines, we can make one set
of memory devices "disappear" and
another set "appear" in the same ad
dress space. This is sort of like multiple

In answer to P.H., to "port" software
from one machine to another is not
always an easy task. Even if they have
the same operating system every com
puter is different. In some cases one just
connects a cable from one output port to
the other system's input port tran
sferring the program as if by modem.
This process deals with different disk
formats well. In many cases it is the only
way to translate different disk formats.
Once you have the program written for
one machine on the other, minor changes
in the code must be done. Some systems
use different codes for clearing the
screen, moving the cursor and so on.
Think of it as an immigration problem.
The alien software must be adapted to a
new, and bigoted society.

One feat of magic in the computer
world are "tristate devices." As might
be inferred, this refers to "three states."
These three states regard the output
lines of a device. Everything in, what I
call the "MicroWorld," is connected to a
bus structure. A bus structure is a com
mon freeway type of affair where data

CP/M compatible operating systems
follow this convention. They must or they
will not be CP/M compatible. There is no
way to break the eight megabyte limit
without altering the operating system's
DOS segment. When CP/M was written
there didn't seem to be a need for more
than eight megabytes per physical drive.
The BIOS defeats this barrier by dividing
up the the physical drive into smaller
eight megabyte segments. For similar
reasons, having to do with a 16 bit
representation of disk drives, physical or
logical, a CP/M comp~tible system can
theoretically support only 128
megabytes. In reality, however, the
practical limit is around 80 megabytes.
For each drive, logical or physical, the
BIOS requires a disk parameter block
and storage area for the drive's direc
tory. This can use up TPA memory very
fast. You should have your programmer
make sure that additional drive support
in the way of BIOS directory storage and
disk parameter block space is available
in your BIOS. If you have gotten this far
on your own, then search all programs
for drive limitation checks. In many
systems you are limited to four drives,
logical or physical, due to the BIOS
storage and support concepts we just
discussed. These drive checking code
segments will have to be defeated before
the additional drive support can be ac
cessed.

The Computer Journal/Issue .26 21



the disk's surface. Instead, consecutive
blocks of data, which should be adjacent,
are separated by a number of sectors on
the disk. This constant number of sectors
is a portion of a given system's format. '
The purpose of skipping a few sectors on
the disk is to improve disk drive perfor·
mance. Whether we are speaking of a
hard drive, or a floppy drive, the medium
spins beneath the read/write heads at a
high rate of speed. If we demanded that
each sector of data were laid down in a
perfectly consecutive manner disk ac·
cess to the data may be slowed. If the
disk controller were not ready to write
the data to disk exactly when the proper
place spun around it would have to wait a
complete revolution for the exact spot on
the media to come around again. By
skipping a constant number of sectors an
"access window" is created, easing
some of these timing requirements. If
this access window is large enough to ac
count for disk controller set up times
delays waiting for the proper medium
position to arrive under the heads can be
reduced, if not eliminated. This results in
faster reading, and writing of data.

You are quite correct in offering the
thought that part of the M8-nOS/PC·DOS
operating system resides both on disk

and in ROM. Many CP/M systems have
their BIOS in ROM. Kaypro is one such
system. The AMPRO machines do not
have their BIOS in ROM, which is why
they are so easy to reconfigure. The
"DOS" system has three portions of the
operating system on disk, as well as the
directories, configured in the same man
ner as normal files. There is the DOS
segment, the input/output system, and
the command processor on the disk. The
BIOS is in ROM. While the contents of the
ROM can be altered to suit your fancy,
this is an expensive process. Those
systems without the BIOS in ROM may
be altered and written back to the disk.
Anyone can boot a disk, but few are
prepared to "burn" new EPROMs which
would also require opening the com
puter's case and replacing the chip<s).
Those system which do not have their
BIOS in ROM are the ones preferred by
all but the casual user.

Bit mapped graphics may be worked
by accessing the special RAM used by
the video system. The manner for ac
cessing this section of memory varies
with the system. Check your system's
technical manual for clues as to the
process required with your system. I am
using an AMPRO PC·DOS system, which

is terminal based, so I cannot currently
help you on this score even though I have
a great deal of data on the subject. I'd
prefer to test out concepts such as these
rather than offering an opinion.

I agree with you that a beginner's
column, or at least a forum should be had
in TCJ. Often the editor has a different
viewpoint. Your questions thus far are
not in the least rhetorical. Other readers
may find information presented here of
use, which is why I sat down to write
these responses. Secondly, reader par
ticipation in a magazine is to the benefit
of all readers. You may never know until
you ask, or until some other reader asks.

C. Thomas Hilton

Your editor is eager to hear whats on
your mind: about the magazine, about
what your working on, tips or troubles
you may have. Write us: Letters,
The Computer Journa~ 190 SuUivan,
Columbia Falls, MT 59912, or post on
our buUetin board (1,06) 752·1038.

-------- Turbo Pascal· Advanced Applications --------

A book with

ADVANCED TOPICS in TURBO PASCAL

22

Table of Contents

o Optimization Techniques
o Using the DOS Background Print Spooler
o System Level Tools
o Creating Libraries
o Exploiting Command Line Arguments
o Using a Binary Search Tree
o Techniques for Data Compression
o Claiming CP/M Memory
o Break the 64K Data Limit
o Linked Lists for Data Structuring
o Interrupts from Turbo Pascal
o Calling the DOS Command Processor
o Bit Mapped Graphics
o Teaching an Old Screen New Tricks
o Implementing 2D Core Graphics
o Build aSubset Pascal Compiler

Order Turbo Pascal· Adrancecl ApplicatIons for $16.95;
with MS DOS disk $29.95. Add $1.50 for shipping and handling
in the US.AII other countries add $3.50 for surface; air rates on
request. Order from Rockland Publishing, 190 Sullivan, Suite 103,
Columbia Falls. MT 59912. Visa and Mastercard accepted. Phone
orders: (406) 257·9119-voice. or (406) 752·1038-modem. F,n
informltlon IVllllbll. Dealer inquiries welcomed.

.....packed with good
advanced technical information. ..

The Computer Journal/Issue "26





Inside AMPRO Computers
l

by Peter Ruber

As a departure from my regularly scheduled Ampro
column, Publisher Art Carlson has given me carte blanche to
write a feature for the Computer Journal about my recent visit
to Ampro Computers. I made the 3000-mile journey to Mountain
View, California, this past August, because I wanted to meet the
people I had talked to so often by telephone for nearly a year.

It was an interesting experience. The atmosphere at Ampro
was informal and open. No closed doors or secretaries running
interference, or artificial protocol to contend with. I went where
I wanted to, talked to whoever had a few free moments.
Sometimes I just watched and listened. You often learn more
that way.

The principal purpose of this trip was to gather background
information on how the company got started, how the SC
SI/PLusa interface bus evolved, how the Little Boards are
produced, and where Ampro was heading in the next few years.
Were they committed to the LITTLE BOARD concept? Or were
they planning boards of different dimensions because the larger
architecture required by enhanced 16-bit and 32-bit systems
would dwarf the 5.75" x 7.75" footprint of the LITTLE BOARD?

Having worked with so many different computers during the
last six years - from tinker toys to IBM compatible systems - I
find myself becoming more involved with the Ampro Little
Boards than any of my other computers because they are such
versatile products. I like the fact that all I/O functions are in
cluded on each single board computer and that they have an
open architecture to interface most any peripheral I might need
in the years ahead, including the burgeoning CD ROM and Op
tical Storage technology we will see in volume production within
the next year or two. My PC system will require a special inter
face to handle these devices, but my Ampro Little Boards
already have that interface.

Most computer manufacturers design their systems with the
same planned obsolescence as do the automobile makers in
Detroit. The typical life-span of a computer product is less than
three years; and during the second year of its life, a new model
rolls off the assembly line to ease the withdrawal pains of the
older model.

A good measure of this marketing philosophy is brought about
by the investment community who pressure computer manufac
turers to go for the "big kill" - profits and earnings per share
rather than a more restrained approach of smaller earnings but
consistent growth.

"That's where the Japanese have it over us," William I.
Dollar, Ampro's president told me. "They plan on surviving
over the long haul. When the large American high-tech firms
run into problems, or become impatient during a static growth
period, they start buying up other companies. And, when they
become too large and unwieldly, they spin off their subsidiaries.
It's like a game of checkers. It lacks the subtlety of chess. The
real losers are the employees, because they're always being
shuttled in and out of jobs.

"American ingenuity created the Integrated Circuit and this
spawned a vast industry. The Japanese then took our
technology, refined it, and started making chips cheaper than
we could. There's nothing wrong with being preoccupied with
new levels of technology, but if you don't make a concerted ef-

The Computer Journal/Issue *26

fort to refine your manufacturing techniques to lower your
production costs, or apply the same ingenuity toward creating
new products, the manufacturers in the Orient wilL"

Bill Dollar seems irritated when he talks about the oppor
tunities American computer manufacturers have overlooked.
"We could easily be the world's leader in chip manufacturing.
Now most of them are imported, and we cry '{oul', The same
goes for PC board manufacturing. A very large percentage of
PC board production is shuffled to Singapore."

"Isn't that where the Little Boards are produced?" I asked.
"Quite true. When we first went into production, early in 1984,

our boards were manufactured right here in the Valley. But the
firm we were dealing with only specialized in short production
runs; and when we outgrew their capabilities, they referred us
to a firm in Singapore that they used for large volume orders.
This company still produces the pre-production runs of new
boards that we use for BETA testing, and which are also sent to
some of our high-volume customers for evaluation. After that,
everything comes from Singapore. The company in Singapore
stamps the boards out like cookie-cutters, and their quality con
trol is so good that it is a rare occasion when we have to reject a
board that fails our own testing."

"Is there a chance that you will transfer board production
back to the U.S.?"

"That's a very strong possibility. There's a company in Idaho
that grew very large, in a relatively short period of time,
manufacturing keyboards for the IBM-PC Jr. When IBM drop
ped this product, their employment slid from over 850 to about
300 in a matter of weeks. Many other firms who had been
manufacturing components for various IBM computer products
can relate similar horror stories. At any rate, they had a sur
vival instinct, and redesigned their facilities to mass-produce
computer boards by using auto-insertion equipment and wave
soldering. We've sent them our specs and have received quotes
that are cheaper than our factory in Singapore. Our next board
may very well be produced in Idaho. It would be to our advan
tage, too, if something goes wrong. One of our engineers could
hop a plane and be there in a couple of hours. Singapore is 9,000
miles away. It's expensive to send someone there. On top of that,
we lose a key staff member for a week."

The Uttle Boards
Ampro's design philosophy appears committed to the LITTLE

BOARD concept of having all the features of a desk top system
on a board that mounts directly to a floppy or hard disk drive.
Similarly, their SCSI/PLUS interface is the key ingredient of
compatibility for all their products.

There are now nine LITTLE BOARD microprocessor based
and compatible enhancement products. The bulk of these have
appeared during the past year. While each new generation of
boards grows in sophistication, they will either interface with
previous products to expand a user's system (or to enhance his
110 capabilities), or to upgrade that system without having to
replace any peripherals.

Two key product categories seem to be Ampro's current stars.
The first is the SCSllIOP. It wasn't designed to just interface
with the Little Boards. It can be used with any computer system

23



-

that requires an intelligent I/O processor. It will add Real-Time
capabilities to any computer system having an SCSI interface.
It plugs into any sm bus backplane and can control s-bit sm
bus I/O boards such as analog-tcrdigital converters, video
display controllers, speech synthesize~, network interfaces,
etc. It effectively replaces sm bus CPU functions.

But its applications don't end there. It will also open up the ar
chitecture of such closed computer systems as the MacIntosh
and the Amiga to simplify the addition of hard disks and con
trollers. It contains a 4MHz (or an optional6MHz) ZllO'I' CPU, 8
byte-wide memory sockets for up to 64K of EPROM/RAM
memory. Included is a Z80-family counter/timer controller
<CTC) option, a battery backed real time clock, and a battery
backed RAM option. It is fully ANSC X3T9.2 SCSI compatible for
target, initiator and arbitration capabilities, and will permit up
to 8 host computers and SCSI/lOP's to share resources. The
price/feature ratio is amazingly low for a product of this kind.

The second, and most important, product is the LITTLE
BOARD/186, a complete PC·DOS4D computer that has three
times the computing power of a PC. It is data and file com
patible with an mM PC4D , running most generic MS-DOS4D
programs. The BIOS has been optimized so that PC-DOS 3.0 or
higher is required to boot the system.

It is powered by an 8 MHz 801864D CPU which incorporates all
DMA and Counter/Timer functions usually performed by sup
port chips in a PC compatible system. The basic board contains
512K RAM <with zero wait states) and 16K·128K EPROM. A
Mini/Micro Floppy Controller will service 1-4 drives, which can
be Single/Double Density, 1-2 sided and 4()- or 8O-track. There
are also two RS232C Serial Ports (one of which interfaces to
most popular ASCII or ANSI terminals) that can operate up to
38.4K baud and a Centronic Printer port. The SCSI multi-master
I/O expansion bus creates a simple interface for hard disk
drives and tape units; and with Ampro's implementation of
Concurrent-DOS4D , multi-tasking and multi-user systems are
possible at prices lower than most businesses are accustomed to
seeing.

Once the LB/186 was in place, Ampro seemingly went for
over-kill. They designed the EXPANSION/186, which san
dwiches on top of the LB/186 and provides 5 key expansion op
tions: a buffered I/O bus with 128 I/O locations; two additional
RS232/RS422 Sync/Async Serial Ports using the 8530/82530 SCC;
an additional512K bytes of RAM; a battery backed Real Time
Clock; and, lastly, the provision for a lO-MHz 8087 Math
Coprocessor that offers a 400% speed advantage over an 80287.

Just released, during my visit, was the VIDEO RAM
EMULATOR which allows an ASCII terminal to run software
which writes directly to the mM's "Video RAM" rather than
using PC-DOS or ROM BIOS function calls. Such software would
otherwise require modification for use with the LB/l86. It con
tains on-board "Video RAM", it simulates the IBM's 6845
registers, and emulates the mM's keyboard port.

The final LB/186 add-on is the PROT0I186, a user
configurable general purpose I/O and memory expansion inter
face. It provides buffered address, data, and control lines; a
large breadboard area where custom circuitry can be added to
allow the LB/l86 to be used in data acquisition, process control,
and SCSI test instrumentation. To simplify the addition of the
custom circuitry, the PROTO/186 has 20 bits of latched Address,
16 buffered Data lines, buffered CPU status and control lines, 6
decoded chip selects (using a 1618 PAL decoder), and 5
programmable inputs for transceiver control.

Ampro also produces completely assembled systems of their
Little Boards, complete with floppy, hard disk drives and back
up tape systems, in configurations too numerous to describe in
this article.

There is also a growing list of special software that exploits
the features of all the Little Boards. Source Code is available for
most of it so that system integrators, engineers developing
special applications, and knowledgeable users can customize

24

The Little Board/186 (Left) and the Expansion/186
(Right). The smallest and most powerful PC-DOS
computer system available on the market today.

their applications. All boards come with some of the best and
most detailed technical manuals available in the industry.

The Origin Of The Uttle Boards
The original prodUct that was eventually to become the first

LITTLE BOARD was created by Richard B. Lehrbaum, VP of
Engineering. Rick is one of those rare people who can do three
things at once without missing a beat.

When I first arrived at Ampro, Rick was working furiously on
the final portion of the schematic for the next generation Little
Board, about which I will provide a quick over-view later in this
article. His free hand was pecking away on a computer creating
the support software. In between he fielded numerous telephone
calls, conferred with his engineers, ran around following up on
their progress, and put the final touches on an innovative new
product call the T-BOX, which has the potential to replace every
Telex system in the country.

Rick received his Bachelor of Science in Physics from New
York University School of Engineering and Science in 1968.
From that year until 1978, he taught Physics and Physical
Science at Northeast Louisiana University, where he also com
pleted his Master of Science in Physics.

Although he had received a grant from the National Science
Foundation and had designed special computers during his
academic tenure, he wanted to broaden his experiences in a
more creative and competitive environment. The years from
1978 through 1983 were spent working in various engineering
capacities at Data General Corp., Advanced Micro Computers,
Dynabyte Corp., and Telesensory Systems, where he worked on
data acquisition devices, intelligent disk controller boards,
multi-user and multi-processor computer systems, disk sub
system design, computer architectural designs, telecom
munication systems for the handicapped, and a host of other
product categories too numerous to mention.

Since Rick is his own best eloquent spokesman, the following

"'II~
m

Richard Lehrbaum, VP of Engineering

The Computer Journal/Issue *26

..l!.



conversation was extracted from an hour-long talk he managed
to fit into his already busy work schedule.

RL: Did Bill ever tell you where the Little Board came from?
PR: Only briefly, on our way to the office this morning.
RL: It just came as sort of a flash one day in the spring of 1983,

while I was working at Telesensory Systems. I had picked up a
Vic-2(),!, to fool around with because I was interested in what
was developing in the low-cost personal computer market. I saw
right away that the Commodore could be used as a terminal, and
that it would be real easy to design a compact board with very
few components for a low cost CP1M system. I had the idea that
the Osborne computers had sold quite a few units, and that users
didn't seem to mind jockeying the screen back and forth. I felt
that Commodore users also wouldn't mind this window ap
proach, and that all I needed was the right terminal emulation
program. I could place my board inside a cheap box and hook it
up to the Commodore.

I took my design to Dave Feldman, who was a professional
draftsman and head of Telesensory Systems' document control
section, and asked him to lay the board out for me and prepare
the camera-ready circuit separations. I planned to sell the
finished product by mail order out of my garage as sort of a
weekend hobby.

By the time we had the working prototype - I think that was
in September of '83 - both Dave and I suddenly realized that we
had created something much more important than a mere add
on product for the Vic-20. The market was also changing
rapidly. The prices of Osbornes and Kaypros had dropped, and
the IBM-PC was becoming more and more of an influence. So we
decided to make the most of what we had, and make a business
quality system we called the "Bookshelf 100." We also decided
to attack the industrial and hacker market who wanted to
replace their bulky S-l00 systems, and make the board available
separately for those who wanted to integrate their own system.

What happened then was that we placed ads in the January,
'84 issue of NUTS &: VOLTS, which was sort of a newsprint type
publication for the hacker market; followed by the February
issue of MICROSYSTEMS JOURNAL, and the March issue of
BYTE. When Microsystems appeared, we could tell where it
was being delivered by the phone calls we were getting. It made
such a splash - the product was so right for the time, and no one
else had done anything remotely like it, offering a complete
computer mounted on a disk drive, with CP1M included in the
price of the board.

The board had an immediate popularity, but very quickly we
were finding out that the imbedded applications market had
taken to our product and that we had to get serious about our
goals because the hacker market only had a limited appeal.

It was about this time that we met Bill through some mutual
business connections, and the three ofus seemed to hit it off. Bill
had been involved in the sales and marketing end of large com·
puter systems and setting up distribution networks. Dave and I
didn't have this kind of expertise, so we incorporated as a full
time business.

As we pursued the computerized applications market, we
began to realize that they needed more than just two serial por
ts, floppy and printer control. There was a limit to the kinds of
applications that could be served by these ports. They tend to be
keyboard intensive, and without any other ports on it, what can
you control? Nothing, unless you start adding other boards onto
it.

So, the original Little Board taught us that you needed a way
to open the architecture in a way to add additional ports. Some
of our customers asked for more memory, but CPIM doesn't
recognize more than 64K. Although it's easy to add memory to a
CPIM system, it's used mainly as a cache or RAMdisk for
storing data that would later be saved to media.

At the same time, the 8-bit processor in our Little Board was
ideal for controlling machines, AID converters and all
kinds of laboratory equipment. Suddenly hard disks were

The Computer Journal/Issue #26

becoming cheaper and a lot of people were asking us to provide
some kind of interface. Thus, I was presented with a two-fold
problem. How do we satisfy the needs of the industrial market to
provide an open architecture that would allow them to interface
to many different types of equipment? And how do we satisfy the
needs of the desktop business user who required a hard disk to
store his data. I really didn't want to trade off one for the other.

And then, one day, it hit me. Why not use SCSI (or SASI as it
was then being referred to) as a small computer systems inter
face. Everyone was in the mindset that SASI/SCSI was only a
hard disk interface. Most of the world still thinks of it that way.
What convinced me otherwise was that SCSI was really a
Parallel I/O bus - with bi-directional bits and control lines - so
it should be possible to make that into an I/O bus for many dif
ferent applications; and - oh, by the way - use it as a hard disk
interface for typical SASI/SCSI applications.

SCSI/PLUS, at its inception, was two things. On the one hand,
it was a philosophy - the architecture; on the other, it was a
means for using it for more than just mass storage. That's what
the PLUS meant from that perspective.

There was also the flip side of the coin of SCSI/PLUS, which
was the idea of expanding the address space of SCSI, because if
you planned to add I/O devices to the bus, in addition to hard
disk and tape storage devices, you can easily run out of address
lines, because SCSI was limited to 8 I/O addresses. This is a
pretty small bus. The Z80 has 256 I/O addresses, and people
think of that as limited.

SCSI, being an intelligent bus, could have a card on it that
could talk to many different devices. So, in fact, 8 isn't as bad as
it sounds, because you could have logical units plugged into each
of those 8 devices. But I felt it was important to be able to extend
that limitation - talk to more than 8 devices, especially when
the bus structure allows you to go 18-feet, because it's buffered
I/O.

So, I looked at the specs and figured out that it shouldn't really
be a problem, and I came up with a scheme to allow 256 ad
dresses on the bus. But looking at the electrical properties,
finally limited that to 64.

PR: Have you actually hooked 64 devices to the SCSI/PLUS
bus?

RL: Not yet. And once the real implementation is looked at for
lots of devices, we may want to limit it to a smaller number. The
important thing to remember is what I mentioned earlier. SC
SI/PLUS is both an architecture and a philosophy that allows
you to think and plan systems in terms of more than 8. I wrote it
up as a spec - a proposed extension to the ANSC standard,
which would allow a couple of additional bus phases in it.

PR: OK. You have, as you mentioned, created an architecture
to expand the ANSC SCSI bus. What is Ampro doing to actually
implement the SCSI/PLUS standard beyond 8 devices?

RL: One of the reasons we developed the SCSI/lOP card was
to provide a means for accessing external devices other than
disks and tapes. It's a target that's under our control. What I
think will happen is that the disk and tape guys will not im
plement SCSI/PLUS unless it's for their own in-house testing.
They don't really see, with their limited vision - of disk and
tape being the whole story - as to why anyone would want to be
able to interface more than 8 devices.

The representative from AT&T - their ANSC committee
member - has expressed some interest in our capabilities,
because they envision larger systems than the average com
puter manufacturer, with a larger number of peripherals on SC
SI. So, different types of needs have to be placed into the proper
perspectives in order for anyone to understand how SCSI, as a
mass storage interface, and SCSI/PLUS, as a means to add
more than just mass storage relate to real world applications.

PR: Specifically, how do you relate these two concepts?
RL: For the personal computer user, having more than one

hard disk and a tape for backup storage is over-kill. For a mini
computer you can imagine getting close to 8 devices. And for

25



something like a super-mini, in an intense computing environ
ment, coupled with the need to control the types of external
devices I mentioned earlier, you can see how you may need to
have 12 - or 15 - or more devices under your control, each with
logical units performing their assigned tasks.

PR: You're referring to real-time clocks, a communications
gateway, disk and tapes, floppies, real-time feedback
mechanisms, external sensors, burglar alarms, co-processors,
and so forth all stuck on SCSI.

RL: Yes. That's precisely the concept we had in mind, and our
SCSI/lOP is the ideal product for us to create a mass-device im·
plementation of the SCSI/PLUS bus. We can make the lOP in
visible on the bus and not run out of address space. The host
computer would be able to talk to SCSI devices - disks and
tapes and controllers - and the host will be able to talk to SC
SI/PLUS devices. If you picture our 186 PC-DOS board, for in
stance, as the host, linked to other 186 boards performing multi·
tasking and other computing operations, and our lOP board con
trolling external devices, you can very easily have 64 devices on
the SCSI/PLUS bus - not counting the 8 devices under the SCSI
side - without any conflict in address space. SCSI/PLUS
devices have their own way of being accessed, and SCSI devices
have theirs. So, if the host can talk both of these languages 
being bi-lingual - we can have a jumper on our board that can
be placed one way to access SCSI devices, and jumpered the
other way to talk to only SCSI/PLUS devices. And as long as the
host has the drivers to talk to these devices, then our devices
don't place a burden on the SCSI address space.

We benefit from the silicon that's been developed, because it
only takes one chip - the 5380 - on each device. And that's pret
ty decent. How many buses do you know that can be established
with the kind of protocol support this chip has? So, we've seized
on the silicon that's been developed for the purpose of mass
storage and have created the first standard Parallel I/O bus for
accessing every conceivable I/O device. There aren't any
ubiqUitous Parallel I/O buses available. The IEEE488 is very
limited in ability and very slow. But SCSI/PLUS has the advan
tage of high speed; it has the advantage of standard silicon; and
it has the advantage of flexibility of mixing both mass storage
and I/O on the same bus.

PR: Do you get involved to any great extent in providing
custom software drivers for your customers?

RL: Sometimes. We prefer that our customers do their own
drivers, and that's one of the reasons why we provide source
codes. We've actually incorporated a SCSI driver that extends
PC·DOS ROM BIOS interrupt structure by having added an in
terrupt 13 for direct SCSI calls. So customers don't have to
worry about the low level protocol, and they can then interface
from that through their own programs. Most of the time, we'll
only prepare custom drivers for specific hard disk drives. In the
SCSI world, even though there is a high degree of standar
dization, individual devices have their individual charac
teristics that have to be optimized. We do this kind of work
where larger companies may be unwilling to support their
customers and usually suggest that their clients hire a con
sultant.

PR: I know that NCR, who designed the 5380, has now listed
Ampro's SCSI/PLUS specifications in the technical literature
they provide for this chip. I assume that represents an endor
sement for the SCSI/PLUS bus.

RL: Up to a point. I pointed out earlier that we will be bringing
up a full implementation of the SCSI/PLUS bus during the next
few months through our lOP board. We may find, at that time,
that the silicon in the 5380 may not be capable of supporting 64
devices. Maybe it will only support 32, for the sake of a count.
We may have to wait for an advanced version of the 5380 with the
proper silicon to handle 64 SCSI/PLUS devices.

Another company here in the valley - whose name I shouldn't
mention - is thinking of making a 5380 compatible chip, and
they're looking at our SCSI/PLUS in order to make the chip

26

special. I think that they, and some other firms, are beginning to
realize that the kind of storage and I/O devices we will have
available in the near future will benefit or need a universal
Parallel I/O bus of this kind. In the past, it used to be quite
unruly. Everyone had their own custom interfaces and standar
ds were hard to define. Ultimately everyone capitulated and
some standards were created: the Centronics parallel printer
interface, the RS232C serial interface, the SASI hard disk inter
face and the SCSI, which is a superset of the SASI. SCSI/PLUS
embraces all these devices, as well as industrial I/O devices, all
on one ribbon cable.

I would like to see SCSI/PLUS become the industry standard
for ail single board computer systems, because it provides for
an inexpensive way to open the architecture of otherwise closed
systems. It could be on the back of every computer as it will be
on every mass storage device. Right now, most single board
computers have some kind of expansion connector to interface
to I/O boards. But each manufacturer has his own peculiar way
of doing this. As such, I/O devices designed for one computer
won't necessarily work on any other. What SCSI/PLUS will ac
complish, if others follow suit, is to create a standard so that an
AID converter from one manufacturer will work with any single
board computer on the market.

PR: I assume, then, that all future Little Boards will have the
SCSI/PLUS interface?

RL: Yes. We've had too much of a challenge creating the
standard, and we want all of our customers - whether they
have an 8-bit Little Board, or our current 16-bit 186 Little Board,
or whatever boards we have planned for the future. to be able to
still function as part of the systems they have created for their
businesses or industrial plants.

I remember, not too long ago, when I called Larry Boucher
and told him I had something I though he might be interested in.
Larry was the father of the SASI architecture when he was at
Shugart. Now he's the Chairman of Adaptec, one of the largest
manufacturers of hard disk and tape controllers. He told us to
come over. Maybe he had heard of Ampro. Anyway, Bill and I
went to see him, and I handed him an overview entitled a "SCSI
Opportunity." When he got to the middle of the page, he began to
smile. The more he read, the bigger the smile got. Finally, he
said, "I like it. Let's do it." He's been real supportive of us ever
since. He reviewed the final proposal for SCSI/PLUS, and
helped make various industry connections for us.

PR: Aside from Larry Boucher at Adaptec, how much success
have you had in generating interest for the SCSI/PLUS architec
ture?

RL: Surprisingly, a fair amount, especially from those who
see the potential of it as a universal I/O bus. But it takes time,
and you have to give people the opprtunity to digest the concept.
I've attended the ANSC SCSI Forums, and talked about SC
SI/PLUS. Typically, it falls on deaf ears at these forums, and
committees are conservative by nature. They don't usually
react until there is a clamoring of requirements in the market,
or until someone shows it will cause a problem if they don't add
it. Everyone has their own perspective and dedication to their
products - just as we do.

PR: Do you think that, in time, ANSC will adopt the SC
SI/PLUS architecture?

RL: That's our hope. Eventually there will be more of a
universal need for a standard I/O bus. as more and more exter
nal devices fall under computer control. So, it is possible that all
or part of our proposal may be adopted. And, as we begin to in
terface more and more devices on SCSI/PLUS. we may find that
we may have to modify our proposed standard. Possibly, we
may ultimately discover some aspect to ease the interfacing
that we hadn't thought of before. And possibly, someone else
might contribute an enhancement. That's yet to be determined.

You have to remember one important aspect from our con
versation. SCSI was designed to provide a common interface for
mass storage. SCSI/PLUS provides a way to open the architec-

The Computer Journal/Issue #26



,
POWER
..ED

5VOC

--if- ·'2VOC
GROUND

121K
OR 512K
BYTES

RESETRAM
SWITCH

'6 ..t 16

Functional diagrams illustrating the diversified
I/O capabilities of the SCSI/PLUS interface (Top>, and
the Little Board/l86 (Bottom).

MODEL 2ACPU

PH: I assume that they're the ones who will do the production
runs?

OF: No. That phase of production is still weeks away. The fab
bouse will produce a dozen or so custom boards for us for in
house and BETA testing. If there's a circuit connection missing,
or the value of a component has to be changed to optimize the
performance of the board, you'll want to make these changes
now, rather than swallow the cost of several thousand finished
Little Boards. So, if changes are necessary, we will simply redo
the layout and prepare new films, which will go to our factory in
Singapore.

PH: I've always wondered how the holes are drilled into a cir
cuit board....

OF: This is a laborious task that's also prepared by the fab
house. We have to provide a layout that indicates the proper hole
size for each component. The boards will be stuffed by auto
insertion equipment, so there must be enough tolennce {or the

27

will later be silk-screened on the board to aid in the board's
assembly. Then everything goes to a photographic house which
prepares a film of the solder pads with the component side cir
cuit traces, and another one of the pads and the circuit traces of
the solder side of the board.

Afinal photographic image is made to create the solder mask
of each side. At one time, this process used to be drawn by hand,
but cameras can now do this task much quicker. All I do is
specify how many thousands of an inch clearance I want around
each pad so that the wave soldering equipment will give us a
clean connection at every point. This is done by defocusing the
lens which enlaiges the image of the pads to my specifications.
They use a high-eontrast film which, when it is developed, will
provide sharp edges around all the pads. They send us a set of
negatives and a set of positives. We retain the positives and send
the negatives to the fab house.

The Computer Journal/Issue #26

ture of single board computers, so that they can access mass
storage devices as well as interface to real world applications by
means of the 5380 SCSI Controller, or a future derivative of this
silicon.

How The Little Boards Are Produced
Although I was familiar with graphic arts techniques and the

photographic process through my years in advertising and
publishing, I was unfamiliar with the process that turned a
schematic into a fully populated computer board. Thus, when
David L. Feldman, VP of Manufacturing, had some time to
spare, I cornered him and got him to explain just what was in
volved.

Over the past 20 years, Dave has worked in various commer·
cial, industrial, and social organizations in capacities ranging
from data processing consultant to advertising. He is also an
experienced draftsman and printed circuit board designer. He
spent the four years prior to helping to start up Arnpro working
for Telesensory Systems, where he was Manager of Document
Control and Engineering Services.

PR: What was your first reaction when Rick approached you
to do the circuit board layout of the original Little Board?

DF: I knew he had something unique. I thought it was too
sophisticated a product to interface to the Commodore; and the
deeper we got into the project and saw how rapidly consumer in
terest and loyalties were changing, the more convinced we
became that we should treat the board as a separate computer.

PH: How did the name Ampro originate?
DF: It was a contraction of Amateur and Professional - the

markets we hoped to appeal to. Hence, Ampro. When Bill joined
US in the project, we set out in earnest to make a go of it. Some
years earlier, when I had a custom photographic processing
service, I liked being in business for myself, and I jumped at the
chance to try it again with Ampro. I knew we would have a rocky
road over the first year or two. And if things clicked, I knew we
would be successful and be able to contribute some useful
products in the computer marketplace. We had some definite
concepts in mind, and being relatively unconstricted by trends,
we had the creative freedom to develop the Little Boards
through several generations.

PH: Speaking of the Little Boards, would you mind showing
me how the design is translated into a finished product?

OF: Not at all. When my department receives a finished
schematic, we do a chip and component count and calculate how
much space we're going to need. Actually, this phase has
several developmental stages, in which we trade off components
while the board is in the design stages. If a chip count tells us we
need 60 square inches to execute the design, but the Little Board
is limited to 43 square inches, then something has to give. That
was, essentially, the problem we faced with our forthcoming
CMOS board, until we came across some custom chips that
enabled us to eliminate enough TIL components to make the
design fit into the Little Board format.

Anyway, to get back to your question, we prepare a rough
component layout on paper, and then place it on top of a grid
over a light table. We place a clear sheet of mylar over this and
transfer all the component pads to the sheet from printed pat·
terns. Another clear sheet of mylar is placed over the sheet with
the component pads, and the component side of the circuit
traces are laid down with blue plastic tape. I like to use blue and
red to distinguished between the top and bottom sides of the cir
cuit board.

As you'll notice from these sheets, all the circuit traces on the
top layer go from left to right: And from top to bottom on the
solder side. That's to facilitate completing a connection that
starts at one end on the top, and terminates at the other end on
the underside. Plated-through holes are used to transport a cir
cuit trace from one side of the board to the other.

When the circuit traces have been laid down, we prepare
another overlay containing all component ID numbers which



leads and pms to go through the holes without bending. The
operator places our negative over a light table and looks through
a scope that kind of resembles a bomb sight. After recording the
outside dimensions of the board, he goes through the painful
process of locating each hole, matchirtg up a set of cross
hatches. and pressing a trigger to record that hole and the
proper drill bit size.

It's DOt a job I would want, as there are anywhere from 7-800
component holes, and an equal number of plated-through holes
to record. I think there are six different hole sizes on our
average Little Board. All this data is recorded on an NC tape,
which will later be fed into the drilling machine. A copy of this
tape is also sent to our factory in Singapore when we're ready to
send them the final negatives for a full production run. It usually
takes anywhere from seven to ten days to produce a handful of
test boards.

PR: So you now have this data on tape. How does the drilling
process work ')

OF: This is also an automated process. In actual production
runs, the factory manufactures six boards on a sheet of fiber
glass. After each board has been etched, these sheets are moun
ted on a table. and the arm of the drilling machine can hold six
bits at the same time. When it starts up, the arm moves to a
hopper where it selects six drill bits of the same size (such as an
0.031 or 0.045 size bit) and drills all the holes for that size on all
six boards. When the holes of one size have been finished, the
arm selects the next bit size. All in all, the drilling of all the holes
on the six boards on that sheet of fiber glass takes about twenty
minutes. When all the boards in a production run have been
drilled, they go to the machine that will do all the component in
sertion. Then they're wave soldered.

PR: Out of curiosity, what does it cost to produce the bare
boards in quantity?

OF: Well, in the case of the CP/M Little Board, the cost is
around $7-8.00. The 186 board costs about $22.00.

PR: Why the disparity of cost when the boards are the same
size and have approximately the same number of components?

OF: That's because the 186 board is four layers, which in
volves several additional production steps. I'm glad you asked
that question, because laying out a four-layer board is a much
more complicated process. We knew right from the start that we
couldn't possibly get all the circuit traces on the top and bottom
sides of the board. So, the first step in a case like this is that you
draw separate layers for the power plane and the ground plane.
Then, at those points where you have to make a VCC or ground
connection within the circuit, you have to create "tag-ins" that
will carry the VCC or ground to the proper pins of your com
ponents,

Since you have to be conscious of all the holes that are going to
be drilled, you have to use a very thin tape to lay down your cir
cuit traces. Ultimately, when the original negatives are reduced
in size, some of these traces are going to be as thin as a human
hair. Now each of these layers are etched on thin sheets of
plastic material. The etching process is critical. If they're left in
the acid too long, some of the fine circuit traces might be totally
etched away.

The etched sheets of all the layers are now ready to be assem
bled. They place a blank fiber glass board in a jig which has pins
to hold the board and the individual layers in place. This, too, is
critical. First an adhesive (or bonding substance) is placed over
the surface of the board. Then the sheet that has the component
pads and the component side circuit traces is laid down. Two
more bonding layers are placed on this. This is followed by the
power plane, another bonding layer, the ground plane, two more
bonding layers, and, finally, a sheet of laminate. Then the board
is turned over and the solder side is laid down. The assembled
sheets then go through a heating press to fuse all the layers
together and then through a controlled cooling process so that
the boards don't bend. The final steps will add the solder mask
and the silk screen legends.

28

The sheets are then drilled and cut apart to create six in
dividual Little Boards. The edges are routed, as are the moun
ting slots. Since the bonding process will sometimes tear some
of the hair-line circuit traces, we insist that the manufacturer
test the continuity of all the traces. And after the boards are
assembled, they must perform another test to check that all the
passive components are alive. This is done by placing the board
on a device that looks like a bed of nails. After the IC's have been
added we insist that the manufacturer run a diagnostic check on
every board. We've sent him terminals and disk drives for this
purpose. If the manufacturer neglects to perform any of these
steps - especially the continuity check - and we receive a
board that is D.O.A., we will charge back the full assembled cost
of the board. This will affect his profit, so he tends to follow our
procedures.

PR: Obviously you don't take his word that the boards are
fully functional.

OF: No we don't, but you would be surprised to learn that
some computer manufacturers only have the factory perform
spot checks on the boards that are manufactured. The ones who
care about the reliability of their products will test every board.
The boards are usually shipped to us in cartons of 50, as they
come off the production line, and we throw them on a burn-in
rack for 48 hours. Then we place each board in a jig that con
tains connectors for the serial ports and the floppy drives. We
plug in a SCSI cable connected to a hard disk and a printer
cable, and run a diagnostic program from the console terminal
that reads and writes to every port. If everything checks out,
they're placed inside anti-static bags and packed for individual
or bulk shipments.

PR: When the manufacturer tests the in-eircuit continuity of
four-layer boards, what fall-out percentage does he have?

DF: There's about a five per-eent fall-out rate. It used to be
much higher. And that figure is dropping steadily all of the time.
It's very rare for a standard two-layer board to be tested as
thoroughly as a four-layer board, because the production
techniques are such that there is almost'a zero defect ratio. Six,
eight and even ten-layer boards are coming on the market now,
and the fall-out rate is much higher. About twenty-five per-eent
of all eight-layer boards are defective. An eight-layer Little
Board would probably cost us about $45 in bare form. We pay for
the fall-out rate.

As you know, we sell a lot of assembled systems in our series
100, 200 and 300 Bookshelf systems, but we don't put them
together ourselves. All the cases, cables, and drives that we've
ordered come to our office where all the components are given a
visual check. They're sent to the company that does our pre
production test boards, because they have an assembly-line set
up for this purpose. When the assembled units are returned, we
hook them up for another 48-hour burn-in, during which time a
read/write to the disk drives is also performed. If anything
breaks down, it's usually the drives, but not very often.

PR: What drives are you using now?
OF: We use Panasonic floppy drives, and Xebec "Owls" and

Seagate hard disk drives. Our selection was made after we sent
a batch of drives over to Dysan, where they have a laboratory
that ingeniously tries to destroy a drive. If the drives survive,
then they're worth using. The cheaper models don't last. That's
why it's very rare for a Little Board to fail. They're nearly bullet
proof. It costs us money to service our products. It also costs our
customers time and money if a board fails. They're paying us
good money to provide them with a computer board that will
work the first time and everytime. You don't retain customers if
you send them inferior products.

PR: I'll buy that. However, can you tell me, from your ex
periences, over the last few years, what usually goes wrong if a
board fails?

OF: An IC might go. But, generally, if an IC slipped past the
manufacturer's quality control, then it usually dies during the
burn-in phase. In assembled systems, a drive might go under

The Computer Journal/Issue 1126



occasionally if it's abused. But the single most common problem
stems from the users themselves. They fail to follow our very
explicit directions that tell them pin 1on the power connector is
+5 volts; pins 2and 3are return grounds; and pin 4 is +12 volts.
They either reverse the power and ground pins and send the
board into cardiac arrest, or they solder the power supply leads
directly to the Little Board. We use standard connectors and we
identify the part names and the manufacturer's ID number so
that the user is guided to the proper part. But sometimes, after
spending several hundred dollars for one of our boards, they
balk at spending fifty-cents for the right connector - and boom!

David Feldman, VP of Manufacturing

What's Next For The Little Boards?
I fmally caught up with William Dollar for an evening of

nagging questions. Bill is in a constant state of hyper-drive,
whether in or out of the office. I suppose that's only natural for
someone who has spent the last 20 years travelling around the
country.

After receiving a Marketing Degree from San Francisco State
University, in 1963, he joined Sperry-Univac, where he worked
himself up to the position of Senior Account Representative for
scientific and commercial markets using the UNIVAC 1107
system. Early in 1967, he began an 11-year stint with Control
Data Corporation, responsible for sales of minicomputers, large
scale systems and scientific software applications to such firms
as Lockheed Missiles and Space, SRI International, NASA
AMES and Ford Aerospace. In 1978, he joined Itel Corporation
as National Account Manager, where he formulated marketing
strategies for sales of large computer systems to Fortune 1000
companies.

In 1980, he ccrfounded Designet, a firm that provided con·
sultation services to the communications industry. One of his
key accounts was the Rolm Corporation, where he conducted

. data communications seminars. In 1982, he sold his interest in
the flrIll and joined Applied Digital Data Systems. This even
tually broUght him into contact with Rick Lehrbaum and Dave
Feldman.

PR: My questions aren't always tactful. I suppose all three of
you put your own money on the line in more ways than one to
launch Ampro as a full-fledged operation.

WD: We converted all of our assets to cash and jumped in with
both feet. Afew close friends bought shares at the beginning, but
it was mostly our own funds.

PR: Any regrets?
WD: None. I don't think Dave and Rick have any either. I

think all three of us have had more honest satisfaction with Am-

The Computer Journal/Issue 1t26

pro than anything else that we've done over the years. We've ali
worked for some good companies, but there's nothing like
working for yourself. Fortunately, we haven't lost our sense of
humor and our pride. This helps to sustain you emotionally over
the rough spots.

PR: What about venture capital?
WD: We've had to turn that down on several occasions in the

last year, because these groups want controlling interest, and
they want to tell you what to create. We have our long-range
plans fairly well defined, and it doesn't include markets with
which we're unfamiliar. You have to be careful how you choose
your bedmates, especially if you're going to be working
together. If we do decide to go this route, we prefer it to be on our
terms.

PR: What's ahead for Ampro? Are you going to continue
producing faster, more powerful Little Boards? Or are you
going to spin off products like the T-BOX I saw earlier today?

WD: The answer is yes to both questions. We will continue to
produce products based on the Little Board concept. They will
take advantage of all the new developments in chip technology.
We have to grow in that respect, because we now have a sizable
and established customer base that will need more powerful
tools in the years ahead. I hope they'll continue to look to Ampro
for computing solutions. But we won't be producing
microprocessor based boards at the rate that we have been
producing them. This was necessary during our formative
stages. We had to build a variety of boards to cover most 8-bit
and 16-bit computing operations. What you will see from Ampro
in the next few years will be an interesting series of packaged
applications.

PR: Do you want to elaborate?
WD: Right now, we're just releasing the T-BOX. This unit,

which can effectively replace any Telex system in the country
for a quarter of the cost - and without the additional monthly
charges for having a dedicated line running into your office 
will automatically dial a user's Telex service or Electonic Mail
Box, log on, and download all messages. The frequency of these
calls can be established either through software or onboard fir
mware. The messages are stored on disk to provide a per
manent record. Sending messages is equally convenient. The
sender merely types the message on his computer. substitutes
his disk for the disk in T~BOX, and the message sequence is
handled automatically.

Next, we will have a SCSI Test Package, complete with har
dware and software, that will allow any manufacturer of SCSI
devices - such as hard disk and tape units - to gang-mount
dozens of units at one time in order to perform a predetermined
series of diagnostic tests to check out the integrity of those
products. There is nothing like it on the market today.

We're also developing Concurrent DOS for multi-user systems
in conjunction with our 186 PC-DOS board. One of the Beta test
sites will be a drug manufacturer who is trying to eliminate ex
pensive regional seminars in order to explain new products to
his field representatives. Usually these seminars are a series of
lectures with a question and answer period. Since no one wishes
to sound foolish in front of one's contemporaries, no one asks
questions, and management is never certain how much of the
data they presented is actually retained. We're setting up
clusters of four-user systems across the country. When a new
product is introduced, data sheets will be distributed to all field
personnel. Then they can go to one of the regional centers in
their area, as work schedules permit, and have their knowledge
on the product re-enforced through a hands-on session with our
computer systems. The session concludes with a very detailed
series of questions, after which the representative is graded.
The participants remain anonymous, so they can learn at their
own pace. The system will be used to educate them on all of the
company's products, so that the representatives go through a
continuing educational process that should enable them to an
swer questions from doctors and hospitals with greater ac-

29



curacy and authority. This concept of staff training has ap
plication in many fields where there has to be an on-going
educational process to stay abreast of new information, concep
ts, and so forth. This is an age where dispensing information is
often a critical and expensive problem, We'd like to offer our
solutions on a cost-effective level.

The new Little Board we have coming out in January, 1987,
will be a radical departure from anything now available on the
market. It uses a new microprocessor and several custom chips.
It's an all CMOS board and consumes only 1.5 watts of power.
That means you can place it into a sealed environment in
Alaska, or in the jungles of South America, and it will function
properly. It will run all IBM software. You can attach an IBM
keyboard to it - or even a standard ASCII terminal. Did Rick
and Dave show it to you?

PR: Yes. I'd like to stick one into my jacket pocket with a bat
tery pack and a keyboard on my lap.

WD: It may come to that, too. Anyway, we now see our
market becoming more defined with packaged applications that
provide quick and easy solutions.

PR: I know it's been nearly three years since you launched the
8-bit CP/M Little Board. How is that product surviving in the
relation to your 16-bit board and the companion boards?

WD: We're selling more of these now than we did in the early
days. Not all applications require a 16-bit PC-DOS board. One of
our industrial users - a firm in Denver called Robotool 
manufactures robotic milling machines. Each robot costs
$20,000. It only requires our CP1M board to make it work. The
board is mounted in a box with a numerical keypad through
which the operator codes in the X-Y-Z coordinates. Then he sets
the machine in motion. If he wants the robot to perform a dif
ferent set of routines, he merely punches in a new set of coor
dinates. The brains of this $20,000 robot is a $200 computer
board.

We've supplied more than 700 CP/M boards to a company in
Sweden that makes a point of sale terminal used for off-track
betting. The limited scope of the ticket sales doesn't require
hundreds of bytes of memory, so the CP1M board is more than
adequate. A lot of times a customer doesn't want to talk to you
unless you're out to sell him a 16-bit board. All he knows about
computers is that the IBM-PC is a 16-bit computer. So, when we
deal with the technicians who will ultimately work with our har
dware, we try to convince them to trust our judgment on which
product gives them be most performance and the lowest price. I
think you gain more respect and have a better long-term
relationship with a client if you're honest with him. He's coming
to you, in a sense, to solve his problems. Treat his needs accor
dingly.

PR: Do you contract with outside consultants for special
projects?

WD: Most of our software in communications, desktop ap
plications, and so forth is either contracted for or licensed. Our
Concurrent DOS is a contract project. We will be using a form of
Xenix or Unix for our CMOS board. This product will be licen
sed. We only prepare the driver software that accesses I/O
devices and peripherals, and the codes for our BIOS firmware.

PR: What about hardware?
WD: That's all done internally through our engineering depar

tment. With one exception. And that was the Video Ram
Emulator card for our 186 PC-DOS board. This was an odd
situation that I think you'll find interesting. A couple of months
after the 186 was released, a young man from Lebanon walked
into our offices one day with a wire-wrap card under his arm. He
said it could emulate IBM screen graphic calls on an ASCII ter
minal. This was a product we had talked about doing sometime
in the near future. His product was quite ingenius - and, it
worked. We offered to buy the rights and pay him a royalty on
each board we produced. But he declined our offer. He had
dreams of starting his own company, and friends and relatives
offered to lend him $20,000 for start up expenses.

30

Rick told him that he needed ten times that sum just to go into
production, but the young man was adamant. So we told him
that if he could manufacture the product for us, we would buy it.
If he couldn't, then come back and we'll license it. Well, we
didn't hear from him for months, until he showed up suddenly
and gave Rick all the drawings and schematics and accepted
our offer. His funding dwindled very quickly, even before he
could have a working prototype made at a fab house.
Ultimately, we'd like to have him come to work for us because
he's an unusual talent. All of our programmers and engineers
have been hand-picked for their special talents.

PR: Are you planning to do any custom chip designs for future
Little Boards?

WD: I think we will have to. The price of custom chips has
come down to where it is almost an affordable reality. It will be
a necessity when we start work on a 32-bit Little Board. The
overall architecture is so large that we will have to find some
way of reducing the number of support components without
crippling the power of the microprocessor. We're using custom
IC's in our CMOS Little Board, but these were developed by
Vadem, Inc. That's the firm that wrote the BIOS for the Morrow
Pivot laptop computer that Zenith sold in huge quantities to the
government.

William 1. Dollar, Ampro President (left) with Don
Costella (right> of Disk Plus, Inc., Arnpro's midwest
distributor at the Atlanta COMDEX Computer Fair·.

PR: You've mentioned networking projects in some of our
phone conversations. Are they still viable?

WD: More than ever. The big problem with networks is that
most people don't know what they are and what they can do.
There are more network interface devices on the market than
you can count, and the prices asked for some of them are twice
what we charge for a 16-bit microprocessor board. There's a
local company that you know about that puts out a neat little
product costing under a hundred dollars per station. They've
revised the drivers to accomodate the interrupt structure of our
BIOS. This will be our initial offering. But we're going to go
beyond this concept by offering greater mobility, without a lot of
wires running through an office. Ours, in fact, won't have any
wires at all. It's a simple concept but requires some
sophisticated technology that I can't mention until we've con
ferred with the FCC about their restrictions and requirements.

PR: How big would you like to see Ampro become?
WD: The obvious answer to that question is to say as big as we

can. But I don't think that's quite true. Let's just say that I hope
we don't become so big that we lose personal contact with our
market and that Rick, Dave and I no longer get a kick out of
having created something special out of one of our Little Boar
ds.•

The Computer Journal/Issue 1t26



NEW-DOS
Part 5: The CCP Commands Continued
By Thomas Hilton

The SA\IE command is generally used only by system level
programmers. This command is required for all modifications
and installations of Hermit DOS. The function of the SAVE
command is to create a document from the program currently
residing in memory, which begins at the base of the TPA. The
syntax of the SAVE command procedure is noted in the source
code listing shown in LISTING ONE.

Our first concern is to extract the number of pages to be saved
from the command line. The support routine NUMBER will par
se this parameter. convert it to binary, and return it to us in the
accumulator. As the number of pages it is possible to save from
memory, in a 64K system, is an eight bit value. we clear the up
per register of the HL pair to assure a valid number is represen
ted by the 16 bit register set. Having loaded the registers we then
save the page value upon the stack.

Next we test for the existence of a document by the name
specified by the operator. If it does not already exist, or if the old
document is to be overwritten we will return here. We then
create a document index for the new document. Assuming all
will be well we get the page count back, but if there was a
problem in creating the document index, such as the index not
having a vacant entry, we will jump out.

As with all sequential write operations we are reqUired to zero
out the current record counter. This assures that the FDOS
segment will begin creating the document properly, at the
beginning. Once we begin writing the document to disk the
FDOS will advance the current record count as it allocates disk
space. We are charged with setting the initial value only.

Recall that the FDOS has a sector mentality, and can only
deal with data 128 bytes (one sector) at a time. A "page" of
memory is 256 bytes, a sector is 128 bytes. We therefore convert
the number of pages to be saved in the document by doubling the
number of pages, which equates to the number of sectors to be
saved. Having done that we save the working position in the
command line and set the DE pair to the first byte of the TPA, or
user program area, for use in defining the DMA buffer area for
reading a sector of memory onto disk. With that done we drop in
to the procedure's main execution loop, shown in LISTING
TWO.

The sector counting routine is a "count down" sequence.
Though we placed the number of pages into the L register, and
cleared the H register, this was before we doubled the count in
converting the data to sectors. In order to determine if we have
saved all of t,pe sectors we are required to save we do a logical

LISTING ONE

PROCEDURE IPP.05

<unambiguous document name>
<unambiguous document name>

;get the number of pages from the cOGmand line
;which is placed in the HL register pair
,but only L is a valid value so clear H
,and .ave page count on the stack for later
'test for existence of document
;if document does exist we come here and
;open a document index entry
land then get the pages to save back
;but jump out if we had a problem creating the
'document index entry
,else we %IPrO out the DCB record record count
land prepare the new document"s DCB
,then double the page value, which make. it the
;number of sectors as there are 256 bytes per
,page, or two sectors
,then update the command line pointer
land point to the start of the TPA save area
,and fall into the save loop

<page. in decimal:>
<page. in hexadecimal>
41 system. com
4tH system. com

CALL NlJf'1BER
LD L,A
LD H,0
PUSH HL
CALL EXTEST
LD C,22
CALL CODRET
POP HL
JR Z,SAVE3

XOR A
LD <OCBCR) ,A
ADD HL,HL

LD (CMDPTR),DE
LD DE,TPA

Purpose: Save the system memory from the .tart of the TPA, for the
number of syste~ page. specified, into a document specified
by the operator.

Verb Syntax:
save
save

Examples: .ave
save

;
;
;

,
;

•;,,,
SAVE:

The Computer Journal/Issue *26 31



LISTING TWO

SAVEl: LD
OR
JR
DEC
PUSH
LD
ADD
PUSH
CALL

LD
LD
CALL
POP
POP
JR
JR

SAVE2: LD
CALL
INC
JR

SAVE3: CALL
SAVE4: CALL

JP

A,H
L
Z,SAVE2
HL
HL
HL,128
HL,DE
HL
DMASET

DE,DCBDN
C,21
FooSB
DE
HL
NZ~SAVE3

SAVEl
DE,DCBDN
CLOSE
A
NZ,SAVE4
PRNLE
DFTDMA
RSTCCP

'are we done with the sequence yet?
'if HL is zeroes out we are
'so we jump out
'else we decrement the sector count
,and save the new count on the stack
,then add 128 bytes, <a sector) to the pointer
'so we can transfer the next block
'and save that pointer value on the stack
;and Bet dma address for write with the
'address in the DE pair
,then load the DCB address for FDOS
,load the FDOS function code
,and make the call saving BC
;then we get back the pointer to next sector
land get the .ectors to save count back
,then if we had a write to disk error we would
Ijump out else loop till done
;when we get here we are done so we load the
;DCB and clos. the document
;did we have an error in closing?
;no, so jump over error routine
;else print the error mes.age
'reset the DMA buffer to PZBUFF
.and exit the procedure

iilt

'.

"OR" of the upper and lower registers against each other. If the
result is zero then we are finished. If we have a nonzero result
then we have more to do.

With more to do we first decrement the sector count, save it,
then add a sector worth of bytes to the memory pointer, advan
cing it upwards in memory 128 bytes, and save that value on the
stack as well. We then use this new memory pointer to define the
DMA buffer address for use by FDOS. With each pass the DMA
buffer will be a sector higher in memory, though FDOS doesn't
care, as long as it does have a buffer address to use. If we did not
advance the DMA pointer we would read the same 128 memory
space onto disk over and over until the sector count was
exhausted. This is not a trivial, nor foolish concept. Several
times a program has had a bug in it and the problem was
discovered by examining the saved document.

With the DMA address defined we load the DE pair with the
address of the user's DCB and make the write sequential FDOS
service call.

Upon return from the write sector FDOS call we retrieve our
pointers and counters and check to see if we have had any type
of write error. If all has gone well we will jump back up for
another sector. If we have had any type of error then we will
jump out to the error handling routine.

When we come to SAVE2 we have exhausted the sector count.
We then load the address of the user's DCB and call the FDOS
"close" service. The "close service" updates the document in
dex, does a little housekeeping, and writes the document index
information to disk. If we have not had an error in trying to close
the document then we will jump over the error routine and per
form a standard procedure exit.

If there has been an error in creating a document index,
writing a sector to disk, or closing the document we will enter
our exiting code at SAVE3. From this point we will write an
error message upon the terminal, and return. Upon return, or
upon entry at SAVE4, indicating a completed procedure, we will

32

redefine the DMA address to that of the page zero buffer,
located at OOSOH, and then return to the CCP command level en
try vector to reset the file partition and active drive, as shown in
LISTING THREE.

The CLOSE support routine does little more than load the
FDOS service code for closing a document, and then jumping to
a generic disk service vector for processing the service request,
and returning a formatted status, or error code.

The support routine FILNUM actually belongs to the FILE
command, but was included here due to its use of the number
routine, and the use of the number routine's error codes. It par
ses the operator specified decimal number from the command
line, and assures it is a valid partition number.

The number support routine begins by parsing a decimal
number from the command line, which is placed in the user's
DCB. We set an index pointer to'point to the end of the possibl~

number string. We then load the B register with the maximum
number of characters a number might attain for conversion into
binary format. The maximum number of characters is defined
by the number of valid characters in a document description, or
eleven characters.

Because the DCB is padded with spaces we may begin sear
ching for the first decimal digit by scanning backwards,
checking for any character that is not a space, continuing until a
nonspace character is located.

When we get to NUMO we have detected an nonspace charac
ter in the string buffer. Is it a token to signify a hexadecimal,
(base 16), number? If it is then we will jump to the hexadecimal
conversion routines, else we will attempt a decimal conversion.

We begin the decimal conversion by resetting the pointer to
the start of the assumed numerical string, and preparing the BC
register pair with the maximum number of characters which
may be converted, and clearing the Cregister.

Next we get the first/next character and determine if we are
finished with the conversion, which will be indicated by a space

The Computer Journal/Issue #26



LISTING THREE

CLOSE: LD C,lOll
JP COURET
Parse number from command line, and return to caller with value in A

Check to see it the

NUHS: LD

iparse the document name into the DCB
jwild carda are not permitted here
jselect a diak if needed
jlook for specified document
jU8e DE a8 a pointer
jand return to caller if doc. not found
ielse save the pointer

jis it in the range a-f?
jor how about a plain old error?
igo if so
ielse bump the pointer
jload th~ digit in C
jget the accumulated value
jexchange the nybbles

jand put the high nybble of new value in E
jthe low nybble in D
imask off the upper bits
jthen overlay the accumulator onto U

jand put it back in U
jthen get II.
jmask out lower bits
ioverlay C
iput it back in E
jand repeat until done
jthen put the processed value in HL
iand the low order byte in A and
jreturn to caller

jand mask out the low nybble
iput it back in D
jthen switch the low order nybbles

jwe get here if the number is in hex so we
iparse the string into the DCB use HL as the
ipointer, D~ holds the accumulated value
jB holds the character count
jand we get the character
jis it a space?
ijump out if so, we're done
ielse if it is the suffix we are done
jand jump out
jelse we convert it to binary
jand jump out on error
iis the number in the range U-91

E,A

PARSE
HL,DCBFN
DE,O
B,l1
A,(HL)

Z,HNUH]
'H'
Z,HNUM]
'0'
C,NUHERR
10
C,HNUH2
7
10H
NC,NUHERR
HL
C,A
A,D

PARSE
NZ,ERROR
SSELDSK
SEARF
DE,DCBDN
Z
DE

OFOH
D,A
A,E

OFH
V

D,A
A,E
OFOH
C
E,A
IINUHI
DE,HL
A,L

ANU
OR
LD
LD
AND
OR
LD
DJNZ
EX
LD
RET

CALL
LU
LD
LD
LD
CP
JR
CP
JR
SUB
JR
CP
JR
SUB
CP
JR
INC
LD
LV
RLCA
RLCA
RLCA
RLCA
AND
LD
LD
RLCA
RLCA
RLCA
RLCA
LD

HNUHl:

j See if the document name in the DCD exists, ask operator to delete
jit if it does exist, and abort procedure if operator responds to the
jnegative

HNUH2:

EXTEST: CALL
JP
CALL
CALL
LD
RET
PUSH

LISTING FlVE

HNUH3:

IIEXNUM:
IINUHO:

LISTING SIX

jget the number of characters from the end
iof the string so we can check for suffix
jback up a character
jis it a space?
ino, so check for suffix
jand keep looping backwards till we have a
jvalid character or number
jif all else fails try to process it
jis the character the hex suffix?
jyup sO jump out
ino, so process as a decimal and load the
iaddress of first character in string
jC is the accumulated value, and B will hold
jthe character count. Now C-O, and B-ll
jget a character
jis it a space?
jwe're done if so

jparse number and leave it in DCB
jpoint to end of string for conversion
ithe number string may not be longer than a
ifull document name, or eleven characters

number is in hexadecimal, base 16

ielse advance pointer to next character
jconvert to binary (ascii U-9 to binary)
iis it greater than ten?
iit's an error if so
ielse put the digit in D
jand make multiply the old value
jby ten

iand check for a range error
ijumping out if so
jthen check once more for a range error
ijumping out if so
ielse the new value equals the old value
jmultiplies by ten plus the digit
jand exit if that caused a range error
jelse set the new value in C
iand loop till done
jthen put the value in the accumulator and
jreturn to caller
ihere we write an error in number message

number, try again' ,0

A, (HL)

ilL

NZ,NUHSI
NUHS

NUHBER
HAXUSR+I
NC,NUHERR

PARSE
HL .DCBFN+IU
B,II

A, (HL)

BC,IIUOH

Z,NUH2

NUHO
'II'
Z,HNUHO
HL,DCBFN

HL
'0'
10
NC,NUHERk
D,A
A,C

A,C
C,NUHERR
A,C
C.NUHERR
A,D

C,NUHERR
C,A
NUHl
A,C

SYSPTC
'Error in
RSTCCP

CALL
CP
JR
RET
CALL
LD
LlJ

DEC
CP
JR
DJNZ

LD

INC
SUB
CP
JR
LD
LD
RLCA
RLCA
RLCA
ADD
JR
ADD
JR
ADD

JR
LD
DJNZ
LD
RET
CALL
DEFB
JP

NUHBER:

FtLNUM:

NUMl: LD
CP
JR

JR
NUHSI: CP

JR
NUHO: LD

LISTiNG FOUR

NUH2:

NUHERR:

iii
III
c:
CD

~

-t;r
CD

f?
3
"0c:-CD...
'o
c:
3
!!.

t



FOA TAS-80 MODELS 1,3 &4
IBM PC, XT, AND COMPAQ

THREE TOUGH
QUESTIONS
WITH ONE EASY ANSWER:

Listing 6 continued
CALL SYSPTC
DEFB 'Overwrite
CALL INPTRM
POP DE
CP 'y'
JP NZ,RSTCCP
PUSH DE
CALL DELETE
POP DE
RET

;and ask operator wants to overwrite document
Existing Document?' ,U

;get operator's response
;get the pointer back
;did we get the go ahead?
;no, so abort procedure
;else save the pointer again
;delete the existing document
;get the pointer back
;and return to caller

1. WHEN IS A COMPUTER
LANGUAGE NOT A LANGUAGE?
MMSFORTH includes DOS,
Assembler and high level
commands and extraordinary
utilities, extends to become any
other language (or application), is
an interpreter and a compiler, and
is remarkably fast and compact!

LISTING SEVEN

PROCEDURE IPP.06

Purpose: Select a new file partition.
Verb Syntax:

file <partition number>
Example: file 12

Purpose: Rename a document
Verb Syntax:

call <new document name> , <old document name>

2. WHICH SOFTWARE RUNS THE
SAME DISKS IN IBM PC AND
TRS-80 MODEL 4?
MMSFORTH disks run on those
and Compaq, and TRS-SO Model
3, and Tandy 1200, and TRS-ao
Model 1, and AT&T 6300, etc., with
your choice of formats up to 200K
single-sided or 400K double-sided!

FILE:

RSTJMP:

CALL FILNUM
LD E,A
CALL SETFlL
JP RSTCCP
PROCEDURE IPP.Ub

;parse file number from command line
;place file number in e
;set the new file number
;and exit procedure

3. WHO OFFERS SOURCE CODE
WITH ITS LANGUAGE,
UTILITIES, DATABASE, WORD
PROCESSOR AND
COMMUNICATIONS
SOFTWARE?
Nearly all MMSFORTH software
includes source code.

All the software
your computer may ever need.

The total software environment for
IBM PC, TRS-80 Model 1,3,4 and
close friends.

- Personal License (required):
IIMSI'ORTH .,... DIIIl (IBM PC) .... t24U5
MM8FORTH s,- DIIIl (TRS-aO 1. 3 Of 4) 121.15

-Personal License (optional modules):
FORTHCOII communiealioOl module . . . • • 31.15
UTIUT1U 31.15
GAMES . . . . . . . . . . . . • . . . . .. 3I.J5
EXPERT·2expett system 11.15
DATAKAHDL!JI . . . . . . . . . . . . .. 51.15
DATAHAHDLER-PlUS (PC only, 1281< nlq.) 11.15
FORTHWRITE WOfd processor 175.00

-Corporate Site License
Extensions from'1,OOO

-Some recommended Forth books:
UNDERSTANDING FORTH(~I . . . • :U5
STARTING FORTH (programming) . . . .. 18.15
THINKING FORTH (IecI1nlquel . . . . . .. 15.15
BEGINNING FORTH (re MMSFORTH) • .. 11.15

ShippIng/handling & tax 0J<tra. No relUrT1$ on software.

Ask your dealer to show you the world of
MMSFORTH, or request our free brochure.

MILLER MICROCOMPUTER SERVICES
61 uke Shore Road, Natick, MA 01760

(61n 653-6136

RCALL: CALL EXTEST
LD A,(TEMPDR)
PUSH AF

CAW: LD HL,DCBDN
LD DE,DCBDM
LD BC,10
LDIR
CALL ADVAN
CP ,
JR NZ,CALJ

CALl : EX DE,HL
INC HL
LD (CMDPTR).HL
CALL PARSE
JR NZ,CAL3
POP AF
LD B,A
LD HL,TEMPDR
LD A,(HL)
UR A
JR Z,CAL2
CP B
LD (HL),B
JR NZ,CALJ

CAL2: LD (HL) ,B
XOR A
LD (DCBDN) ,A
LD DE,DCBDN
LD C,23
CALL CODRET
RET NZ

CAL3: JP ERRLOG
DEFS 32

STACK EQU S
END

;test for existence
;get the temporary drive
;save it
;move the new document name to a safe place

; 16 bytes

;advance the command pointer
;is the character the into character' ,'?
;no~ so jump out
;swap the registers
;advance the pointer
;save pointer to old document name
;parse out the document name
;no wild cards here!
;get old default drive
;save it
;compare it against current default drive
;m&tch?

;yes so jump
;check for drive error

set default drive
rename document
FDOS function code for rename

if all is well exit procedure
else write an error message
stack area
top of stack

The Computer Journal/Issue '26



character in the DCB buffer area. If we are finished we will
jump out. else we will continue. in LISTING FOUR.

We next advance the counter and assure that the character
represents a valid numerical character. If it is not a valid
numerical character then we have an error condition and abort
the conversion.

The conversion process is best understood by "paper com
puting." That is. perform the conversion process using paper
and pencil. following each program step in sequence, and noting
the condition, and contents, of the working registers. There are
better decimal to binary algorithms, but few that are as
economical as this one. When we have either detected a space
character, or have exhausted the number of characters possible
to convert, we will place the converted value, held in the C
register during processing, into the accumulator, and return to
caller.

If we have had an error in the conversion process, or the
operator has input an illegal character, then we end up at
NUMERR. Once here we print a generic numerical range error
message and return to the CCP command level.

If we had detected a hexadecimal suffix, indicating that the
number is a hexadecimal expression, then we will have been
sent to HEXNUM, in LISTING FIVE. In a similar fashion to the
decimal conversion routine we parse out the numerical ex
pression, set the HL pair as an index, the maximum number of
characters allowed in the expression string, and clear the DE
register to hold the conversion working value( s).

Now we get the character, and check to see if we are at the end
of the string, indicated by a DCB space pad character. If it is a
space then we are done. If it isn't a space then perhaps it is our
suffix character. If it isn't our suffix character, then is it a valid
hexadecimal character? If not we have an error. If it isn't a
decimal number is it in a valid range for a hex character? If not
then we have an error, plain and simple. If all is well then we
will begin the conversion sequence. Again, you are advised to
"paper compute" the algorithm for understanding.

In LISTING SIX we test to see if the document exists, we use
support routines from the other personality procedures. When
installing your own procedures, and deleting others, be very
sure that you do not remove a support routine used by others.

We begin the test by placing the document name into the DCB.
If there is a wild card in the document name we will abort. Wild
cards are not allowed in the document name for the procedures
calling this routine. If all is well, thus far, we will select the user
specified drive, if any, and use the FDOS search services to
determine if the document already has an index entry. If no in
dex entry for the specified document exists, then we may
proceed, else we will ask the operator if the document is to be
overwritten. -

If the operator indicates a desire to preserve the existing
document we will abort to the CCP command level. Ifnot we will
free the old document's allocations and return to caller.

The FILE command procedure sets the imaginary me par
tition area. There are 16 mes under the basic version of Hermit
DOS. Three of these mes have special meaning.. File 0 is the
system file, where command documents may be placed to get
them out of the way, while still making them available to the
system. File 15 is the archive file, where documents may be
placed for safekeeping. File 1 is the default file assigned by the
BIOS. Refer now to LISTING SEVEN.

The file command is very simplistic. We parse the me number
from the command, using a routine we have discussed
previously, which is returned to us in the accumulator. When we

The Computer Journal/Issue 1126

get the file number we place it into the E register and make an
FDOS call to set the specified file number, and return to the
command level return vector which will make the selection ac
tive.

The CALL procedure is very close to the CP1M REN function
in structure. We begin by testing for the existence of the new
document name in the current disk's index. We then get the
temporary drive number and save it upon the stack.

The new document name is then moved into the DCB at
DCB+16, where the FDOS will expect to find it, for the
renaming process. In the above code the BC register pair is used
as a counter for a Z80 specific block move instruction. Hermit
DOS uses a large number of Z80 specific instructions, which is
one reason why it will not run on older systems using the 8080 or
8085 microprocessor.

We then attempt to locate the second, or original, document
name. We do this by looking for the delimitting comma which
must separate the two document names. If it is not found then
we will jump out.

We then swap pointer registers for use by other routines, up
date the command line pointer, save it, and parse the second
document name, which will be placed into the DCB in .proper
position for the renaming process.

Next we check to assure that the default drive and the tem
porary drive are the same. We cannot request that the new
document name be on a different drive than the old document.
This is a simple renaming sequence, not a copy command.

If all is well with the drive selection then we will load the tem
porary drive variable with the default drive number, and set the
DCB also for the currently active drive prior to making the
renaming service call. Upon return, assuming we have had no
indication of an error, we will return to the CCP command level
by a return to the RSTCCP vector, whose address is on the
stack.

If we have had an error then we will jump to a generic error
handling vector, prior to returning to the CCP command level at
the RSTCCP vector.

The following code defines the CCP stack area where our
return addresses and temporary data has been stored. As might
be noted, this is a very small stack, but our traffic is not that in
tense. As might also be noted, this also defines the last byte of
the CCP, hence our discussion of the CCP has been completed.

From this point onward, the CCP is all yours, to do with as you
feel best. Never be afraid to try something new. Just make sure
that you make a working disk for your experiments, keeping an
archive copy of your source code. Everyone makes mistakes,
and back up copies can save one's temperament. •

35



ZSIG
by Jay Sage, ZSIG Software Librarian

I n my last column I promised that this time I would discuss
some ideas for new Z-System programs and program enhan
cements. Before turning to that subject, however, I would like to
address another issue.

ZCPR3 on a Floppy-Only System
Many people have said that ZCPRJ is a great operating

system but that one must have a hard disk system to use it. I
would like to put that myth to rest. ZCPRJ CAN BE USED AND
USED VERY EFFECTIVELY ON A COMPUTER WITH
FLOPPY DISK DRIVES ONLY. I have Z-System running on six
8-bit computers, and only one has a hard disk drive (that's the Z
Node machine. which I almost never get to use myselfl. Admit·
tedly, ZCPRJ runs much better on a system with a hard disk
drive and/or RAM drive, but everything runs much better on
such a system. Z-System no more requires a hard disk than does
standard CP/M.

Squeezing More Performance Out of a Floppy System
A full-up Z-System with shells, error handlers, a search path,

and an extended command processor (ECP) can make for a lot
of disk accesses, and this can slow operation down. However,
there is a simple technique that can help a great deal and can
even benefit a hard disk. To understand the technique, you need
a little background on how the disk operating system mos 
either BDOS, ZRDOS, or P2DOS) works and how data are stored
on a diskette.

Let's take up the second matter first. Data on a diskette are
stored in circular tracks numbered from the outside of the
diskette. The first two tracks (sometimes one, sometimes three)
are reserved for the operating system code and are called "the
system tracks." When the computer is first turned on or when
the reset button is pressed, the microprocessor starts running a
program stored in a ROM (read-only memory chip), This
program contains instructions that initiate a process whereby
the entire operating system is read in from these system tracks.
Additionally, with each warm boot, initiated by the user with a
control-C command or automatically by some programs when
they are done, the command processor code (and generally the
DOS as well) are reloaded into memory from the system tracks.

With the next track inside the system tracks begins what is
called the directory of the disk. Like the index of a book, the
directory has entries for each file stored on the disk containing
such information as the name of the file and where on the disk
the data for that file are stored. The directory has a fixed size
and can accommodate only a fixed number of entries (that is
why if you have many small files, you can sometimes get a "disk
full" message even when there appears to be plenty of room on
the disk). The rest of the disk is devoted to the storage of the
data for files.

Now let's look at what DOS does when it wants to read a file.

38

First it has to find out where the file is stored, so it moves the
drive heads to the directory. Since the directory, unlike the in
dex of a book, is not sorted, DOS must start at the beginning and
read through the directory until it finds the entry for the file it
wants. Once it knows where to go on the diskette to find the data,
it moves the heads to the proper track and reads the data. This
head movement or seeking, as it is called, can take a long time,
especially with older, slower floppies. Even a fast, modern drive
that steps at a rate of six milliseconds per track will take nearly
half a second to seek from the directory track to the innermost
track on an 8O-track drive. Clearly files located near the direc
tory track will load much faster than those located near the in
side of the diskette. And files with directory entries near the
beginning of the directory will have a slight edge over those with
their entries at the end.

I think you can now see what we should do to speed things up.
But two further questions face us: 1) which are the files whose
loading times are critical to the performance of a Z-System, and
2) how can one get the operating system to a) place directory en
tries for these files at the beginning of the directory and b) place
the data for these files on tracks near the directory?

The second question is easy to answer. Whenever DOS writes
a file out to disk, it uses the first free entry in the directory and
places the data in the outermost available space on the disk. Af
ter a diskette has been used for a while and files have been writ
ten and erased many times, directory entries and file data can
be rather disordered. However, if one starts with a freshly for
matted disk (with only the operating sysgen'ed onto ill, files
copied to it wili fill the directory and data spaces exactly in or
der.

Now comes the question as to which files should be written to
the fresh disk first. The general answer is: the ones that are ac
cessed most often. In a Z-System one must be careful when
trying to answer this question because there are files that are
accessed automatically by the system, and the user may not
even be aware of them. Here are my suggestions for files to put
on the list. The exact order in which they are copied to the disk is
not that critical.

If you are like me and have been known to make typing
mistakes when entering commands, then you will want the ZC
PRJ error handler to be called in so that you can correct the
mistake. Put your favorite error handler on the list (mine is
VERRORJ. If you use an extended command processor (more
on that subject in a future column), you should put it and its
associated files on the list. I use ARUNZ, a program that
enables one to store hundreds of alias scripts in a single, small
text file, ALIAS.CMD. Whenever a command cannot be
executed either as a built-in command (in the FCP, CPR, or
RCP) or as a transient <COM file), then ARUNZ is invoked, It
tries to find the given command name in ALIAS.CMD. Since
these operations are performed often, I include ALIAS.CMD and

The Computer Journal/Issue #26



8 inch
5 inch
3 inch

ARUNZ.COM on my list of files. Another popular extended
command processor is LX (or LRUNZ), a program that extrac
ts programs from a library (COMMAND.LBR) of COM files. If
you use LX, then put LX.COM and COMMAND.LBR on your list.

The next category of programs to consider is shells and their
associated files. I make frequent 'use of the history shell, HSH,
with its command line history file HSH. VAR. It allows one to
perform complete editing of the command line, just as if one
were entering the line with WordStar. In addition, it lets one
recall commands issued previously (even on a previous day! ),
edit them as desired, and run them again. What a pleasure to
run a system like this! Another command-line shell, VCED (for
video command line editor) performs similarly, and the choice
between them is a matter of personal preference. Both of them
can really slow down the operation of a floppy-based system if
not placed on the diskette as described above. Other commonly
used shells are VFILER (with the VFILER.CMD macro file)
and MENU and VMENU (with their menu files MENU.MNU
and MENU.VMN). If you use any of them, add them to the list.

The last category of files I include on the list is files that I in
voke manually very often and want to see the results of fast.
This especially includes directory programs (SD and XD, for
example>. I also hate to wait for' my text editor (PMATE), so it
is on my list.

Let me finish by mentioning some files that I do not include on
the list. Obviously I don't include files I rarely use, such as the
system segments (SYS.RCP, SYS.ENV, etc.> that are used
rarely except at coldboot time. I also do not include programs
that take a fairly long time to run anyway or which are
generally run in batch mode. I put assemblers and linkers in this
category. With them, most of the time is spent actually com
puting or reading and writing the files on which they operate.
Who cares if the assembler loads in 2 rather than 5seconds if the
assembly takes 20 seconds or more anyway. I would probably
also leave off the list programs that I tend to spend a lot of time
in once they are loaded. Turbo Pascal is an example. Since it has
a built-in editor and keeps the source code and object code in
memory simultaneously, one generally lives inside Turbo while
developing a program. Batch programs, like SUB, SUBMIT, or
ZEX, would not be on my list. Since they initiate a long, time
consuming sequence of events anyway, why be in such a hurry
to get things started.

The mention of ZEX reminds me of one final hint on how to
expedite the use of this speed-up technique. I make a batch file
for ZEX (you could use SUBMIT just as well) with all the copy
commands in the order in which I want the mes to be on the new
disk. The script for a MAKESYS.ZEX me to be run from the A
drive to make a new system diskette on drive B might look
something like

MCOPYB:=HSH.*
GO B: =ARUNZ.COM,ALIAS.CMD
GO B: =VERRORCOM
GO B: = VFILER.*
GO B: =SD.COM,XD.COM
GOB:=*.*N
GOBl:=l:*.* N

If you leave out a file and have to repeat the process, it is much
easier to edit the batch file than to enter manually all the copy
commands again, especially since you'll probably accidentally
skip another file and have to repeat the procedure still again!
The last two lines copy all the rest of the mes in user areas 0and

The Computer Journal/Issue .26

Enclosure &
power supplies
for
FLOPPY,

~~;~:~::' ---- r"'" """]
~~:~Eu~~~RD -,,~_J
• S-1 00SYSTEMSl..--- ,... ---.-J

III :,j :·1 :·1
'~

CUSTOMIZING
AVAILABU

Call or write
for free
catalogs &
application
assistance

=I~II~~~~I~I.:
RESEARCH CORPORATION

8620 Roosevelt Ave. • Visalia, CA 93291
209/651-1203

TELEX 5106012830 (INTEGRAND UD)
EZlINK 62926572

We accept BankAmericard;Visa
and MasterCharge



1; the 'no replace' option 'N' makes MCOPY skip over any files
already on the destination directory. If you have files in other
user areas, add lines for them, too.

New Program Suggestions
We now turn to the promised subject for this month's column

- suggestions for new programs or program enhancements. I
hope some readers will decide to take a shot at writing these
programs and submitting them to ZSIG. If so, I recommend that
you let me know in one of the ways (including writing to me)
described in my column in the last issue of The Computer Jour
nal. That way we won't have two versions of a program that
have to be integrated. Those of you who perhaps do not have the
assembly language programming knowledge can still con
tribute by sending in further suggestions and ideas. As I said in
the last column, the real ingenuity in software is not so much in
the actual coding as in the conceiving of new program ideas.

SETPATH
The path feature of ZCPR3, which allows a COM file to be

loaded automatically from a drive and user area other than the
one from which the command was issued, is probably the most
used (and least noticed) feature. The utility used to support this
capability, PATH.COM, operates in only two ways. When in
voked with no command tail, it displays the search path curren
tly in effect, listing each path element symbolically (possibly
with '$' characters for current drive or user), in DU format, and
in named directory format. When invoked with a command tail,
the tail is interpreted as a new search path, replacing the old
one.

CACHE22+ CP1M 2.2
=CP/M MaxI

CACHE22 is a front-end system pro
gram that buries all of CP/M 2.2 in
banked memory. It helps aoao/zao
computers to survive by providing up
to 63.25K of TPA. plus the ability to
speed disk operations. eliminate
system tracks, and run Sidekick-style
software without loss of transient
program space. Complete source and
installation manual. $50.00.

CPiM IS a trademark of Digital Research Inc
Sidekick 15 a trademark Of Borland International

GMIKEN OPTICAL COMPANY
53 Abbett Avenue. MOrristown. NJ 07960

(201) 267-1210

38

I have often wanted to make simple changes to the path, such
as adding a new element at the beginning or end of the path.
Later I want to remove it. With the present PATH command one
has to enter a complete new path specification each time. I
would propose a new program, which might be called SET
PATH, that would offer more flexible options. The syntax for
SETPATH would be as follows:

SETPATH [/option element-list] [/option element-list] ...

The following option specifiers would be recognized:

C- clear existing path and append elements listed
A- append path element list to existing path
P - prefix path element list to beginning of existing path
D or R - delete (remove) listed elements from existing

path
After the new path is built and loaded, the final path would be
displayed. Option 'C' would be the default option if no option is
given explicitly, and thus SETPATH would work the same as
PATH when used the same way. Just to make sure that the syn
tax is clear, here is an example SETPATH command:

SETPATH /ANEWI NEW2 /D OLD2 /P NEW3

If the old path had been "OLDI OLD2", then the new path would
be "NEW3 OLDI NEWI NEW2."

There are some technical details to consider. The new path
should be built up in a temporary buffer and its length checked
only at the end, since additions made before deletions might
make the path temporarily longer than allowed. If the final path
is too long, one should probably leave the path as it was, display
an error message, and ring the console bell. One might also
want to set the ZCPR3 program error flag (and clear it when the
command succeeds). For security reasons, named path elemen
ts must be checked for passwords, and drive/user path elements
must be checked against the maximum drive and user values
specified in the environment. Naturally, like PATH, the entire
utility should work only if the wheel byte is on.

To be complete and thorough, one might want to recognize a
leading pair of slash characters not as an option but as a single
slash in a path element name. Otherwise one would have no way
to use a named directory whose name begins with a slash. The
first version of SETPATH could omit this feature, since it is not
critical. A command tail with '//' or'/, only should display a
built-in help message.

There is an issue with the 'D' and 'R' options. In some cases an
element may appear more than once in a path. My default path,
for example, is 'SYS ASM MODEM SYS·. SYS appears both at
the beginning, so that it is searched first, and at the end, so that
programs that access the root element will also use SYS. My
choice would be to make the 'D' and 'R' options delete only one
occurrence of an element. Perhaps 'D' could delete starting at
the beginning of the path and 'R' could remove starting from the
end of the path. Usually, of course, the path element would ap
pear only once, and both options would give the same result. I'm
not completely sure what should be done when the element to be
deleted is not found. The path should still be built, and an error
message should probably be displayed, but the ZCPR3 program
error flag should probably not be set.

SETPATH, as described here, would be fairly easy to write,
since it could borrow most of its code from the present PATH
command. An alternative enhanced PATH command, a video
program which might be called VPATH, would display the path

The Computer Journal/Issue 1t26



in a full-screen format and allow the user to edit the path, inser
ting and deleting elements using cursor controls and editing
commands. My present feeling is that such a command would be
overkill. SETPATH would be adequate and would have the ad
vantage that, not requiring interactive input, it could be run
from batch files and aliases. '

SETNDR
The named directory facility in ZCPR3 can be very con

venient. I find it handy to put all my assembly language tools in
a directory called ASM and my modem related programs in a
directory called MODEM. It is much easier to remember the
names than the particular user numbers chosen. Some
programs make automatic use of named directories. The HELP
program, for example, looks in a directory named HELP for the
file containing the help information. Echelon's disk cataloguing
program DISCAT uses a directory named CAT to keep the
catalogues and a directory BACKUP to determine the drive
holding the diskette to be catalogued.

A program similar in concept to SETPATH, which might be
called SETNDR, would be useful for making simple manual ad
ditions, deletions, or changes to the named directory register
(NDR). For example, as mentioned above, DISCAT catalogues
diskettes in the drive containing a directory named BACKUP. In
order to make DISCAT work with a different drive, one would
normally have to have or make another NDR me and load it
with LDR. SETNDR would be much easier to use.

SETNDR could be a very simple, short program with the
following syntax:

SETNDR DU: - remove name associated with area DU:
SETNDR DIR: - remove directory with name DIR
SETNDR DU: NAME - assign NAME to area DU:
SETNDR DIR: NAME - change directory DIR to NAME

A second name on the command line could be used to assign a
password to the directory.

SETNDR DU:NAME PASS - define new name and
password

SETNDR DIR:NAME PASS - assign new name and
password

Before assigning a name to a driveluser area, the program
should check to make sure that the name is not already assigned
to a different DU. If it is, there are three reasonable
possibilities.

1. The program could display an error message and refuse to
make the change;

2. The program could delete the existing assignment,
provided it is to a user-accessible area (Le., not password
protected or beyond the maximum drive and user values
specified by the environment) ; or

3. The program could report the situation to the user and
prompt as to whether the existing assignment should be deleted
(again provided the assignment to be deleted is to a user
accessible area).

My preference is the second choice, but a message should be
displayed reporting the assignment that has been deleted in
case it was ur.intentional.

Like SETPATH, this program should be fairly easy to code.

The Computer Journal/Issue '26

The parser built into ZCPR3 would do almost all of the work
required to interpret the command line. The programmer would
only have to detect the absence of any command tail or one with
only 'II'. In these cases a built-in help screen should be
displayed. Most security issues would also be handled by the
ZCPR3 command-line parser. However, the program code
should check the wheel byte and prohibit changes if it is not set.

If the ZCPR3 parser is used, some possibly erroneous input
would pass undetected. For example, the command lines

SETNDR DU: NEWNAME DIR:
SETNDR DU:NEWNAME U:

would ignore the password field (since the parser would see no
fllename). Also, a command like

SETNDR NEWNAME

will assign the new name to the currently logged-in area. The
latter is probably acceptable (perhaps desirable), In any case,
if one wants to control these cases, the code would have to
double check the actual command line tail and not rely only on
the default me control blocks.

There is already a utility called LDSK (load disk) for
automatically setting up named directories after one switches
diskettes in a floppy drive. If a user area on the diskette contains
a fIle whose name begins with a hyphen, then LDSK assigns that
name (not including the hyphen) to that area. LDSK might have
some code one could borrow for SETNDR.

• Z Best Sellers •
Z-COM (7 disks) $119.00
Easy auto"nstallation complete Z·System for virtually any zao
computer presently runmng CP/M 2.2. In mInutes you can be
runnong ZCPR3 and ZROOS on your machine, enjoying the vast
benefits. Includes 70+ utility programs and ZCPR3: The ........

Z-Toois (4 disks) $150.00
A bundle of software tools indivOJaly priced at S260 total. Indudes
the ZAS Macro Assembler. ZOM debuggers. REVAS4 disassembler.
and ITOZIZTOlsourcecodeconverters. HD64180support.

PUBLIC ZRDOS (1 disk) $59.50*
If you have acqUIred ZCPR3 for yOUT Z8O-<:ompatible system and want
to upgrade to fUll Z·System. all you need is ZRDOS. ZROOS features
elimlnatoon of control·C after disk change, public directones. faster
execution than CP!M. archive status tor easy backup. and more'

TERM III (6 disks) $99.00*
TERM III has been called °a cosmos'. Why? Because it's 29 programs.
featuring T3MASTER and T3SERVER. are galactIC in scope. KERMIT.
XMOOEM. 1k XMOOEM, and batCh YMOOEM protocols supported.

DSD (1 disk) $129.95
The premier debugger lor your 8080, zao. or HD64180 systems. Full
screen. with windows for RAM, code isting, regiS18rs. and staCk. We
featu re ZCPA3 versions of this professional debugger.

Quick Task (3 disks) $249.00
zaO/H0641ao multitasking reanime executive for embedded com·
puter applications. Full source code. no run time fees. site license for
development. Comparable to systems from $2000 to $40.oo0!
Request our free Q.T Demonstration Program.

'ZCPR3 reQUIred. Z·System OEM inquiries invited.
VisaiMaslercard accepted. Add 54.00

(_ .) sllIppll1Qil\andling ,n NonIl America.
- I actual CCSl elsewhere- Echelon,lnc* Speo!ydlskformat

885 N. San Antonio Road • Los Altos., CA 94022
415/948-3820 (Order line and tech support)

39



Enhanced IF.COM
Conditional command processing, though rarely invoked

d~rect!y in user entered commands, gives ZCPR3 alias and bat
ch scripts tremendous power and flexibility. Scripts can test
such conditions as:

• whether a previously run program has set or cleared the
program error flag;

• whether a parameter value has been specified or omitted in
an alias invocation;

• whether a specified file exists;
• whether the file not only exists but has non-zero length;
• whether one of the ten user registers contains a specified

value;
• whether the wheel byte is set or clear; or
• whether or not a terminal definition (TCAP) is loaded.

Some of the conditional testing is performed with the ZCPR3
resident FCP (flow command package>. Optionally, the FCP
can pass on conditional testing to the transient program
IF.COM. The user can also force invocation of the transient IF
processor by including a directory specification with the com·
mand, such as "AO:IF... " or even just ":IF.... '. Since IF.COM
does not have to be resident and permanently reduce the
memory available for program operation. it can be a bigger and
more capable program. I will mention here some enhancements
that would be useful in IF.COM.

Current IF processing allows one to determine the presence or
absence of a parameter with the NULL option. Howard Gold
stein has requested an ambiguity option:

IF AMBIGAFN

This would allow an alias script to determine if a parameter
passed to it was ambiguous, so that an error message could be
echoed instead of passing an ambiguous file specification to a
program that requires an unambiguous file name.

Tht cW'rent IF processing allows one to determine the
existence and non·zero size of files with the EXIST and EMPTY
options. It would be useful to be able to test the attributes of
files, as in

IF ARCHIVE AFN - do files have archive bit set
IF RO AFN - are files read-only
IF RW AFN - are files read-write
IF WP AFN - are file wheel protected
IF SYS AFN - are files of system (SYS) type
IF DIR AFN - ".re files of directory (DIR) type

The current version of IF.COM allows a test of the form

IF AFN1=AFN:l

which compares two possibly ambiguous file specifications. It
can be used fairly generally to compare command line tokens,
as in the following VFILER.CMD macro script:

IF %PT=LBR;LDIR %$;ELSE;ECHO NOT LBR
FILE;FI

VFILER replaces the parameter %PT with the type of the file
currently pointed to. If the pointed-to file is a library, its direc
tory will be displayed; otherwise an error message will be

40

echoed.
There have been a number of times when I have wanted to test

inequalities. ARUNZ alias scripts can read values from the user
registers and from memory locations. Sometimes one would like
to test for values that are less than or greater than some other
value. Thus it would be handy to have tests other than just
equality. Equality is the easiest to code because the ZCPR3
command line parser already handles the equal sign (since it is
used in commands such as REN and CP). For the extended
comparisons, I would propose a syntax of the form

IF TOKEN1 TOKEN2 RELATION

The first two tokens (words) on the command line will be parsed
by the ZCPR3 command processor and placed into the two
default file control blocks at SCh and 6Ch. The IF.COM code
would have to scan the command tail saved starting at memory
location BOh to see if there is a third token. The following tokens
could be recognized:

EQ or = - token1 same as token2
NE or < > - token1 not same as token2
LT or < - token1less than token2
LE or < = - token1less than or same as token2
GT or > - token1 greater than token2
GE or > = - token1 greater than or same as token2

Any wildcard characters in either token would be taken as equal
to any corresponding character in the other token. Thus" ABC·"
would be equal to "?BC", since the "A" in the first position mat
ches the ,,?,. in the second token and the ..." in the first token
matches all the blank spaces in the last five character positions
in the second token.

I think these ideas should be enough to keep you busy for a
while! I have several possible subjects for my next column but
will await your response before deciding what to cover. Please
send in your suggestions.•

Further details on program submission are on page 43 in issue
#25 of TCJ. Jay can be contacted by modem on his Newton Cen
tre Z-node 1/3 at 312-649-1730, or by mail at 1435 Centre St.,
Newton Centre, MA 02159.

The Computer Journal/Issue .26



Affordable C Compilers
by Don Howes

One of the major problems with learning the C language is
the price of most of the available C compilers. Prices for a full
featured compiler can be up to 500 dollars (or more), so what
can a person who wishes to explore the language without
making a major software investment do?

One thing they can do is take a look at one of the three com
pilers I will be reviewing here. These compilers are; Eca-Cas by
Ecosoft, Datalight C by Datalight, and Mix C by Mix Software
(see Table 1for pricing and vendor information). The nice thing
about all of these compilers is that they are priced under one
hundred dollars each (that's right! l. In fact, you can buy all
three of them for $158.90, but that may be carrying things a little
far.

Table 1: Vendor Information.

Datalight
11557 Eighth Avenue, NE

Seattle, WA 98125
(206) 367-1803

Datalight C $69.00
Datalight CDevelopers Kit $99.00

Ecosoft Inc.
6413 North College Avenue

Indianapolis, IN 4622Q
(317) 255-6476

Eca-Cas $59.95

Mix Software, Inc.
2116 East Arapaho, Suite 363

Richardson, TX 75081
(214) 783-6001
Mix C $39.95

The Benchmark Suite
Rather than focus on one or two benchmarks of arguable

validity, I have used a total of ten small programs each designed
to examine one restricted aspect of a compiler's performance.
Also, knowing that it would be impossible to ignore, I ran a
vanilla version of the venerable Sieve of Eratosthenes (no
register variables or pointers). All the benchmarks were
executed on an IBM compatible computer running at a clock
speed of 4.77-MHz, without an 8087. All benchmarks were loaded
and executed from a hard disk, except for cpychar, which was
run independently on a floppy disk. Times reported for the ben
chmarks were obtained using !l digital stopwatch, with most
benchmarks being timed five times and the reported time found
by averaging the total time. The exceptions to the five trials are
float and double, since the run times for these benchmarks were
very long. These two benchmarks were timed three times each.
Although the stopwatch tracked to 1/100th of a second, this is
well beyond my reaction time, so I will be reporting the times to

The Computer Journal/Issue #26

the nearest 1/10th of a second. This should be accurate to a tenth
of a second either way. Also, I consciously made the decision to
compile the benchmarks to what may be termed "the lowest
common denominator." Although both Datalight and Mix offer
methods to optimize the code to some degree, this wasn't done
for these benchmark timings. Be warned therefore, that the
reported times should be viewed as worst case scenarios for
those two compilers and some tweaking with the compiler swit
ches or additional programing may increase the execution
speed.

After saying that, let's take a short look at the benchmark
suite. The benchmarks can be broken into two basic tyPes, those
which test the code size generated by a compiler and those
which exercise various aspects of the compiler and the run-time
library.

Code size benchmarks are represented by min, minputs and
minprt. min compiled a minimum size C program to measure
the amount of compiler generated startup code linked into every
program. minputs looks at additional code added by a call to the
run-time library, while minprt provides a measure of the
amount of code necessary to use the printf() formatted print
function. None of these three benchmarks were executed.

Of the executable benchmarks, the simplest was loop. This
program consisted of two empty, nested for loops, the outer loop
executing twenty times and the inner loop two thousand times.
This benchmark served two purposes. First, it was a measure of
the capability of the compiler to implement loop constructs and,
second, it was the same loop structure used to control the in
teger, float and double benchmarks. The times for loop can be
subtracted from those benchmark times if you wish (this wasn't
done with the times as reported here).

The benchmarks for integer, float and double are considered
together, since they vary only in the declaration of variables.
Each of these benchmarks used the double loop structure men
tioned above, with each program performing a total of eighty
thousand additions and forty thousand divisions. The times for
these benchmarks measure how each compiler handled the dif
ferent variable types in simple arithmetic.

The trig benchmark is designed to provide a measure of the
compilers ability to work with trancendental functions. In this
benchmark, a total of 72Q function calls were made, evenly
divided between sine, cosine and tangent calls. The value passed
to the function was given in radians.

The screen benchmark examined the compilers ability to
write to 'stdout' using putchar(). A total of 1600 characters were
written to the console by this benchmark. Each run of the ben
chmark started from a blank screen, so that scrolling did not
have to be taken into account.

The cpychar benchmark performed an unbuffered character
oriented file transfer using a 1058 byte C source code file as its
test file. This benchmark was run on a freshly formatted floppy
disk, so that sector allocation in the file copy could be controlled.
Using an empty disk allowed the file to be COPied In contiguous

41



sectors and provided the minimum copy time.
The sieve benchmark finds prime numbers using the Sieve of

Eratosthenes method. The benchmark did ten iterations of the
sieve.

Benchmark Results
Results or the code size benchmarks are given in Table 2 and

the execution benchmarks in Table 3. Only two of the bench
marks could not be compiled. The Datalight compiler could not
compile the float benchmark, generating a compiler error
message of "DLC2 bug: TH2 in main." The Mix compiler was
not able to complle the trig benchmark, since the compiler does
not have a tangent function (strange, since sine and cosine fun
ctions are present!). Also, code sizes for the Mix compiler are
reported With and without linking in the runtime package. If the
runtime support is linked in, the program can run as a stand
alone program. If not, the runtime overlay package must be
present for the program to operate.

Editor's Sate. 1 called Roy Sherrill at Datalight. and he advised
that the problem was caused where float.c increments a float. Roy
said that thIS will be fixed in the next revision.

Both Ecosoft and Datalight have reasonably small amounts of
startup code linked in the min benchmark (see Table 2>' The
thing to note here is the large increase in minimum code size
when a single call to printf( ) is made, due to the necessity of the
compiler linking in code to handle both integer and floating point
variables. I find it hard to compare the Mix compiler in these
code size tests, but the code bloat that occurs when the run time
package is linked in is very evident.

Table 2. Code Size Bench..rk••

Benchmark Listings

/*min.c*/
main()
{
}

/*minputs.c*/
maine)
{

puts("This is a string.");

/*minprt.c*/
maine)
{

printf("This is a string.");
{

\><luop.c*\
main()
{

int i.j;
puts("start")j
for \i=U;i<LUj++i)

for(j=U;J<LUUU;++j)

}

puts("stop")j

"in
l1input.
l1inprt

Ecoso~t

1536
271e
B82e

DAtAlight

2b74
4l1J98
'HI9lJ

2927/21714
3874/21801
45441/23327

I*integer.c*/
main,)
{

Table 3. EMecution Benchaark.
(ti_ in aecond. or .inut_:aecond.l

EcollOft DAtAUght "1M

Loop 8.9 e.8 12.b
Inteq_ 3.1 3.1 2b.4
FlOAt 5:58.7 5::m.2
Double 5:21.e 3:~.9 5:.7.2
Trig 29.7 2b.2
Sieve le.8 1•• 2 3:.1 ••
ScreM'l 3.b 3.8 4.8
CpychAr 8.7 8.2 9.3

In the timing benchmarks two things stand out. First, the very
good performance of the Datalight compiler in the double ben
chmark, taking approximately 2/3 the time of Ecosoft and Mix,
as well as its smaller, but still significant, edge in the trig ben
chmark. The second thing is the woeful times returned by the
Mix compiler for the loop, integer and sieve benchmarks. I find
it hard to believe that any compiler generates such bad code for
what are the most common of operations and calculations (loops
and integer arithmetic). I was very surprised. therefore, by the
good showing of this compiler in the float and double bench
marks. Apparently, the slow integer arithmetic times are due to
bad compiler design.

As a note to those who may be wondering, the float benchmark
will always time out slightly longer than the double, since a
variable declared as a float is promoted to a double before being

42

int i.j.k.1j
j=lj
k=2j
puts("start");
fur (1=Uj1<2U;++1)
{

for(i=U;i<LUUU;++i)
{

k=(j+l) / j+i;
}

}

puts("stup")j

/*tloat.c*/
main()
{

fluat i,J,k,lj
j=l.Uj
k=L.Uj
put::;("slart");
for (l=ujl<LU;l=l+l)
{

The Comput8r Journal/lssu81126



ror(i=u;i<2UUU;++i)
t

k=( j+l) / j+i;

}

puts("stop");

/*double.c*/
maine)
{

double i,j,k,l;
j=l.U;
k=2.0;
puts("start");
for ,1=U;l<LU;++1)
{

Eor(i=U;i<20UU;++i)
t

k=(j+l)/j+i;

}
puts("stop");

/*trig.c*/
maine)
{

int x;
dou bie i, J, k, 1 ;
double sine), cos(), tan();
puts ("s tart");
for (x=O;x<2U;++X)
{

i sin~U.392699);

j sin(U.7tl539tl);
k = sin(1.17~OY7);

1 = sin(1.963495);
i sin(2.3S61Y4);

used in an arithmetic expression. This promotion, and sub
sequent demotion when being stored. adds extra overhead to the
program and causes it to run slightly slower. It's for this reason
that I'm not very upset about the Datalight compiler not being
able to compile the float benchmark. In situations where you
wish to do a lot of floating point operations (graphics, for instan
ce) it is better to declare the relevant variables as double, This,
of course, displays my own bias for sacrificing storage space in
favour of execution time.

DatalightC
This may be the best C compiler buy present today. Two ver

sions of the compiler are available, a $69.00 version containing
code which supports the small memory model and the $99.00
Developers Kit, which has three additional memory models.
Other than the additional memory models, both versions of the
compiler are the same. I personally would recommend spending
the additional thirty dollars for the Developers Kit. You would
have a compiler capable of doing virtually any job, for a fraction
of the price of any other multiple memory model compiler.

Documentation comes packaged in a 3-ring binder, in a 51h x
8% page size format. The documentation totals 216 pages, com
plete with a table of contents and a good index, There is no
language reference bundled with the documentation, so have
other reference materials on hand for learning the language. In
general, I found the layout of the documentation to be good and
easy to read. Library functions are listed one to a page in
alphabetical order, so things will be easy to find. However, there
are no code fragments given with each function demonstrating
how the function should be used. nor are there any program
ming examples in the documentation.

Loading the compiler onto my hard disk was relatively easy.
Two batch files are provided, one for setting up the compiler to
run from floppy disks and the other to run from a hard drive. I
didn't test out the floppy installation procedures, but I did find
two problems in the installation on the hard drive. First, the
batch file did not properly specify the "set" variables in its
creation of an AUTOEXEC.BAT file. This caused the
AUTOEXEC file to fail. Second, the DLC.COM file was not
loaded to the hard disk. Since this is Datalight's version of the
CC driver which oversees the compile and link process, this was
a significant <but easily correctable) oversight.

..

\

"
, ' .
. '::

"".
"

SUPER DRIVES!!

8" SHUGART 112 Height DSDD
MODEL 860-1 MINT CONDITION
WITH 1 FULL YEAR WARRANTY.
THESE DRIVES DO NOT REQUIRE
AC, TRACK TO TRACK ACCESS TIME
3MS, CAPACITY IS 1.6 MB.

CEC $279.00
P.O. Box 1965
Burlingame, CA 94010
(800) 228-3411

The Computer Journal/Issue *26 43



Once everything was loaded, I found the compile and link
process using this compiler to be very straight forward.
Oatalight C is composed of two modules, with each module
probably making more than one pass through the source code
(the total number of passes isn't documented>. One touch that I
liked is that the compile time for each module is reported when
the module is exited. Command line switches on OLC allow for
the creation of either EXE or COM files, as well as files using in
teger only code or code which will support both integer and
floating point arithmetic. The ability to specify integer only
support will create a significant decrease in the size of a com
piled module. In addition, the compiler supports the creation of
ROM-able code through the use of a OLC command line switch,
as well as providing support for third party debuggers with the
ability to specify the output of line numbers to object files
created by the compiler.

Provided with the compiler as separate programs are ver
sions of MAKE and TOUCH which allow for the automatic com
piling and linking of large, complex programs when only a few
of the programs modules have been modified. Oatalight also
provides the assembler source code for the compiler startup
code, which you can modify if needed to suit your environment.

Compiler features include full K&R compatibility as well as
extensions which match some of the likely changes to come out
of the ANSI X3Jl1 C Standards Committee. These are; enum
and void data types, structure and union assignment and, struc
ture !lassing to, and return from, function calls.

In all, I found this to be a compil~r with almost no flaws. It
produces fast code and compiles quickly. If the documentation
would include examples of function use along with each function
description, and the company fixes the floating point compiler
bug, that would take care of just about all my wishes. This is an
excellent buy.

Ecosoft Eco-C88
Documentation for the Ecosoft compiler comes bound in a 51'2

x 81'2 paperback book. The manual totals 172 pages, including
documentation for the CEO text editor (which Ecosoft is curren
tly including in the price of the compiler>. The manual has a
table of contents and an index. I found the documentation
somewhat hard to work with, due to the small size of the
manual. It would be more functional for Ecosoft to package the
documentation in a 3-ring binder.

There is no language reference included in the documentation.
although there is a useful chapter on common C programming
errors which should help the novice C programmer avoid some
of the pitfalls which tripped up the rest of us. Ecosoft recom
mends the "C Programming Guide" by Jack Purdum as a
reference. Error messages returned in the CED editor are
keyed to this text by page number. Library functions are
presented in alphabetical order, with multiple functions being
present on a single page. The chapter containing the function
descriptions starts with a listing of all the library functions
grouped by functional category, which will assist a new user in
locating a particular type of function. No code fragments
demonstrating the use of each function are given along with the
function description, although there is a chapter giving some
programming examples (mainly to do with compiler specific
functions) .

The compiler and its associated files can be loaded t,o run
either from a hard disk or from floppy disks, using one of two
batch files for setup. I encountered no problems with installing
the software on my hard drive and found the installation instruc
tions to be clear and complete.

44

j = 5in(2.748893)j
k = sin(3.534292);
1 sin(3.~L69~I)j

i = sin(4.31969U);
j sin(5.1U5U88);
k sin(S.497787)j
1 = 5in(5.890406)j
i = cos(U.3~2699;j

j cos(U.785398)j
k cos(I.178U97)j
1 cos(1.963495)j
i = cos\2.35bl~4);

j cos(2.748893)j
k cos(3.534292)j
1 = cos(j.9269~1);

i = cos(4.31969U);
j cos(5.1U5U88)j
k cos(5.4~7787)j

1 = cos(5.8~U486);

i tan(O.392699);
j tan(O.785398);
k tan(I.178097)j
1 tan\1.9G34~5);

i tan(2.356194)j
j tan(2.748893)j
k tan(3.534292);
1 tan(3.92b991;;
i tan(4.JI969u;;
j tan(5.IU5U88)j
k tan(5.497787)j
1 = tan(5.89048b);

}

putS("stop");

/><&ieve.c*1
I/il1clude "stdio.h"
fldef il1e t rue I
i/Jefine tdl"e U

#defil1e size 81~U

#define sizepl 8191
char flagslsizeplj;
maine)
{

int i,prime,k,count,iterj
printf("1U iterations\n");
tor (iter l;iter (= l~;iter++)

{
count u;
for (i=U;i<=size;i++)

flagslij = truej
tur (1=U; i<=size; i++;

it (flags l i J )
{

prime = i+i+3j
k = i+primej
while(k (= size)
{

The Computer Journal/Issue *26



The Ecosoft compiler is a four pass compiler (preprocessor /
compiler, optimizer. code generator and assembler) which sup
ports the small memory model only. Command line switches for
the CC driver allow access to a version of make (which Ecosoft
terms "mini-make") and to a "lint"-like compiler utility which
will check for semantic errors in the source code. Use of this op
tion allows for the development M code which can be easily
transported to other systems.

As I mentioned above, Ecosoft is currently shipping their
compiler with the CED text editor (normally available as an ad
ditional item). This editor is designed to work with the compiler
to form a complete development environment. and I found it to
work very smoothly. The editor is modelled closely after the
Turbo Pascal editor and allows the user to write code and per
form the compilation/d,ebug process all from within the editor.
Usi.ng the "-ed" switch when compiling caused the compiler to
create an error file which is used by the editor. If errors are
found during compilation the editor returns to its entry screen,
with the cursor on the first line containing an error (there is an
associated error message). All errors are flagged and you can
move through the file fixing things as you go. I found this to be a
very good development environment which significantly eases
the pain normally associated with debugging Ccode.

Compiler features include K&R compatibility (with the excep
tion of bit fields) plus X3Jll extensions. These include; struc
ture passing and return from function calls, structure assign
ment, enum and void data types and prototyping. In addition,
the source code for the CC driver is included, so you can modify
the driver to suit your development environment.

In all I like this compiler and have spent quite a bit of time
developing code on it. Together with its editor, it makes a
development environment which is hard to beat. If Ecosoft sup
ported additional memory models for the development of larger
systems there would be nothing more you would need.

MixC
Unfortunately, Mix C can best be described as documentation

in search of a compiler. The documentation shipped with the
compiler is impressive. It comes bound as an 8lh x 11 paper
back volume which I found a little large to work with around my
computer, but is big enough that it will stay open fairly easily.
All together, the documentation totals 433 pages, divided into
five sections (Getting Started, Tutorial, Reference Manual,
Functions and Tools). There is no overall table of contents or in
dex, but each section has its own detailed table of contents and
index associated with it. This may make it a little bard to find a
specific topic. The Tutorial and Reference Manual sections
combine to form a comprehensive language reference, with
numerous programming examples. The Functions section has
the library functions divided between five different chapters
and the functions are listed in alphabetical order within each
chapter. I found that this made for a lot of flipping of pages,
trying to find the right chapter for a function description. There
may be multiple function descriptions present on a single page,
but each description is accompanied by a code fragment
demonstrating the use of the function. All in all, the documen
tation itself is almost worth the price of the compiler.

I believe that the compiler was first written for CP/M, and
still shows its origins. Unlike the other two compilers examined
here, Mix C does not have any batch files (or indeed any real in
structions) for loading the compiler and its associated files onto
either a floppy system or a hard disk. In addition, the compiler
expects files to be present either on the default directory of the

The Computer Journal/Issue "26

DISK DRIVE SERVICE
5114" " .. " , $35
8" , $45

SERVICE SPECIALS
Apple II Drives $30
Shugart SA 4OO/400L $25
Shugart SA 800/801. " $25
Shugart SA 850/851. $35

DRIVES FOR SALE
Shugart SA 800-2 (wide frame l. $59
Shugart SA 850 (wide framel. $99
MPI 52S 5%" DS/DD full ht.. $55
Tandon 100-2 DSiDD full ht.. $70
Tandon 100-1 SS/DD full ht. (new) $6O
Apple II Drives $85
Genuine "IBM" (PC) floppy contr $60

60 day warranty on all drives and service. Turnaround
time usually 24-48 hours. Trade-in available for drives too
costly to repair. Prices do not include parts or shipping. If
parts are more than $20 we get permission before
repairing. Units returned UPS COD unless otherwise
requested. All drives for sale are reconditioned unless
otherwise noted and documentation is included.

LDL ELECTRONICS
13392158 St. N., Jupiter. FL 33478 (305) 747-7384

Surplus Parts
Resource

Here's a catalog any serious computer tinkerer needs. It's a
treasure-trove of stepper motors, gear motors, bearings, gears,
power supplies, lab items, parts and pieces of mechanical
and electrical assemblies, science doa-dads, goofy things,
plus project boxes, lamps, lights, switches, computer furni
ture, and stuff you might have never realized you needed.

All at deep discounts cause they are surplus!
Published every couple of months, and consecutive issues
are completely different. Send $1.00 for next three issues.
JERRYCO, INC. 601 Linden Place, Evanston,lIIinois 60202

45



hard drive or on drive A. If you wish to change this, you must
patch the compiler using DEBUG (the necessary patch
procedure is given in a read.me file). I find this to be a rather
archaic and unnecessary procedure. The compiler is not well
suited for the DOS environment and apparently does not make
use of information kept in the environment table.

Once everything is loaded the compilation process is fairly
straight forward. However, the compiler produces only COM
files, which I take to mean that only the 8080 memory model is
supported (code and data must fit in 64Kl. Since this isn't
documented. I may be wrong. One thing I found is that the CC
driver does not have any command line switches. Instead, com
piler options are passed to the compiler as source code commen
ts using the special form "/·$compiler_option·/". This is a
format similar to that used by Modula-2, but is very non
standard for C compilers. As well, Mix C does not use the
Microsoft linker, but rather, a proprietary linker of their own.
Since the format of this linker is different from Microsoft's,
compiler output is also different and object files created for use
with the Microsoft linker (by other compilers or assemblers)
cannot be linked using the Mix linker. I found the linker to be
rather awkward to use, since the default mode of the linker is to
not link in the run time overlay package. Since I generally wish
to be able to create stand alone programs, this meant that for
each program I wished to link. I had to go through a menu ver
sion of the linker answering questions (no command line swit
ches). This got tiring very quickly.

Included with the compiler are two separate programs
designed to perform optimization of the compiler output before
it is passed to the linker. The first of these is SHRINK which op
timizes for space and the second is SPEEDUP which optimizes
for speed.

48

Benchmark Listings Continued
flagslkl = falsej
k += primej

}
count = count + 1j

J
printE("\n%d primes",count)j

I*screen.c*/
lIinclude "stdio.h"
maine)
{

int i;
puts("start");
for (i=U;i<16UUj++i)

putchar(' .')j
put8("stop")j

I*cpychar.c*/
Ifinclude "stdio.h"
main.(argc,argv)
int argc;
char *argvlJj
{

int Cj

flLt *tpl, *tpL, *fopen()j
puts~"start")j

fpl = fopen(arg'tlll,"r")j
fp2 = fl)pen(argvl2j,"w")j
while l(c = getc(fpl» != EOF)

putc(c,fp2)j
fclose(fpl) ;
fclusdfp2) ;
puts~"stop");

}

The compiler is K&R compatible, including bit fields. The only
X3J1l extension included in the compiler is structure assign
ment.

If this compiler lived up to its documentation it would be a
good buy, unfortunately, it does not. The compiler still appears
to be in transition from CP1M to MSDOS and does not function
well in the DOS environment. Until the compiler is significantly
upgraded, I can't recommend it.

So Now What?
Here is where I go out on a limb and give some recommen

dations about what I think would make a good investment of
your money. Of the three compilers I've looked at, either
Ecosoft or Datalight (especially the Developers Kit> would be
excellent buys. If you are looking for a good, streamlined
development environment and don't need additional memory
models, then the Ecosoft compiler would be the one to buy. If
you want a compiler which is clean, with good documentation
and is undoubtedly the cheapest multiple memory model com
piler around, then the Datalight C Developers Kit is for you. •

The Computer Journal/Issue '26

"



Concurrent Multitasking
A Review of DoubieDOS

by Jerry Houston

Once in a while a product comes along that is so good,
something inside me fairly screams to tell everyone about it.
Most recently I've felt that way after using a utility program
called DoubieDOS from a company called SoftLogic Solutions.
This product offers true concurrent multitasking at a very af
fordable price. It's well-thought-out, convenient to use, and
provides some additional features that are, themselves, worth
the price of admission.

Everyone has different reasons for needing multitasking, but
I'm convinced that everyone has reasons. In my case, the need
was clear from the moment I set up a bulletin board system for
use by my students. Called COLLEGE CORNER, it provides a
very useful E-mail system in addition to making public domain
software conveniently available to the one class of individual
who's almost always too broke to buy the comercial stuff 
college students.

There were a lot of hours when I wasn't using the computer,
and I reasoned that someone else could be benefitting from it
during that time. After all, I never shut if off, so why not put it to
good use? It wasn't long before I found myself needing the com
puter for a few minutes to enter grades into a spreadsheet, but I
couldn't because someone else was in the middle of downloading
the public domain equivalent of the Encyclopaedia Britanica.
On the other hand, there were times when I was using my word
processor to prepare a test or a handout, and I'd feel really
guilty when I'd notice the CD light on my modem turn on 
someone wasn't able to log on because I was hogging the
system. Clearly something needed to be done. I needed a way to
provide concurrent multitasking, and it had to be a way I could
afford.

There are a number of public-domain approaches to
multitasking, and I tried two of them (PS and DOSAMATC, both
available from the BBS here at TCJ). Though they are both very
useful programs, and we certainly can't argue about the price,
they don't provide the answer. Both programs provided
multitasking, that is, partitioning of the computer's workspace
so that more than one program, or task, could be resident at a
time, but they didn't provide concurrency, allowing more than
one program to appear to be running at the same time.

Both are handy, and I recommend them highly to anyone who
doesn't actually need concurrency. The idea is that you can
switch back and forth quickly from one program to the other,
without having to reload either of them.

An obvious application is when using a word processor such as
Jim Button's excellent PC-WRITE, which includes one program
called ED.EXE for editing text and another one called PR.EXE
for printing files. Rather than changing back and forth between
them (especially in these days of slow floppy drives and cheap
memory), why not keep both in memory and ZAP back and forth
between them by pressing a simple key combination? Either
DOSAMATC or PS works fine for that.

The Computer Journal/Issue 1126

Another good use is to run a term program like ProComm in
one partition, and your word processor in another. While trying
unsuccessfully to log onto a BBS, you can ZAP over to the word
processor and record a few precious thoughts, then while
waiting for the next inspiration to strike (or while running to the
kitchen for a snack) you can ZAP back to the term program and
let it continue dialing. Notice that when you leave the term
program, it will not keep trying your number, but that it will
pick up right where it left off when you return. That's
multitasking without concurrency.

Of course, my needs here were different, and so might be
yours. I need to have COLLEGE CORNER available whenever
a student calls, and still be able to use the word processor or
spreadsheet when I have some work to do.

I mentioned that I tried PS (Program Shift) and DOSAMATC
without luck, and I tried TopView. I disliked the formality of
TopView - all the set-up that was required and the inflexibility.
You can't just use TopView to run whatever program you need
at the time, each of them has to be individually installed first,
with special configuration files created for it. So much for those
250 useful little utilities on the hard disk, and if you want to do
something with DOS, it had better be one of the services
provided through TopView - not all of them are. All in all, Top
View might be useful for someone with a few specific programs
they need to run concurrently at times, but NOT for unrestricted
use of the computer up to the limits of memory.

In desperation, willing to put up with whatever was necessary
for the sake of concurrency, I went through the tedious process
of installing a few programs to run under TopView, and got to
the point that I could share the computer between RBBS-PC and
PC-Write - not exactly my idea of heaven, yet I could keep the
RBBS going during those hours when I was writing. All seemed
functional, if not ideal, until version 14.1B of RBBS arrived, and
later version 14.1C, all set up to use a fantastic new sliding
window version of the Kermit file transfer protocol. Trouble
was, using Kermit (which I very much wanted to do) required
another 128K of memory IN ADDITION to the 192 used by RB
BS-PC. I soon found out that TopView didn't leave me enough of
my 640K to run the RBBS system and any other significant
programs. I don't know exactly how much overhead it requires
- frankly I no longer care enough to check - but I can assure
you it's significant.

I use a monochrome adapter and a high-resolution amber
monitor, because I spend literally hours at a time writing ar
ticles for computer magazines. I don't generally do anything
with my computer that requires pixel graphics, so well·fonned
easy-on-the-eyes monochrome letters are best for me. I bought
Microsoft Windows, thinking that nearly anything would be an
improvement over TopView, only to find out that I can't use it
with my monochrome adapter, so that package remains
unopened.

47



POOR MAN'S NETWORK
Now you can Implement networking on your own CPIM compulers and share resources
whenever you want Each user can access files and pnnters on the otller computer
directly. Without expensive hardware or sWitches. and wllhout a commUnications pro'
gram Share floppies RAM·dlsk. hard disks. and printers between two us~rs. Works wllh
mJst Slandard CPIM programs. like Wordstar. PIP. dBase II. etc.

Poor Mln's Network wor~s best With bidirectional parallel ports. or standard senal ports at
g600 baud or greater Present version supports two computers only. and reqUIres CPIM
2.2 on each computer Uses only 6K 01 memory Does not reqUire a hard disk: runs on
8080. 8085. Z·80. HD·64180

Poor Mln's Network comes ready to run on BigBoard I and iI. Xerox 820. NorthStar
Honzon. NorthStar Advantage Televldeo TPC I. Kaypro (not 2000). Apple II (Super
Senal reqUired\. 5'100 With Compupro Interfacer 4 Can be Installed on other computers
by altering one of the assem:Jler overlay files prOVided. Each disk contains drivers for all
the specified computers

Best 01 all $69'
IS the pnce: only •

SPICily disk lorlllll: 8" SSSO. NorthStar. Kaypro or Apple CPIM. Phone orders accepted: sorry.
no COOs or Purcnase Oroers Payment may be by certified cheque money order Visa. or
Mastercard Personal cheoues Irom outSide Cdnada require up 10 5 weeks to clear Canadian
orders please pay 10 Canadian dOllars. Olhers ,n US Oollars Pllce Includes diskette. manual and
postage Onlallo reSidents please adO provlOclal sales tax
Note II you use another operallng svslem. such as CP/M 3 or PC·DDS. serll1 us your name and
address. but no money. ana we wI/I notify you when II IS available lor youl system

ANDERSON TECHNO-PRODUCTS INC.
947 Ricnmond Road, Dept T

Ottawa, Ontano K2B 6R1, Canada

Telephone 613-72i-0690 for more information or to order.
CP/M IS a lfacemal'll: ')1 D,gltal ResearCh Z·80!s a traoemar1c: at lilog, Woroslar IS a traelemark 01 MlcroPro dBase
II IS a Irademark QI AY11011- Tale Poor "fans ~elwork I'; a traoemark 01 Doug AMerson Techno·Products Inc

I knew of a couple other SYSOPs who have used DoubleDOS,
so I ran out and actually BOUGHT a copy of it yes.terday ($32.95
at my local software store, and only $49.95 at full retail). I
wouldn't want anyone to think this review is so favorable
because those folks gave me a copy. It's been the answer to my
prayers, and COLLEGE CORNER no longer needs to come off
the air when I have to use my computer.

DoubleDOS simply splits the computer's memory into two
partitions, and then lets you do ANYTHING YOU WANT TO
with those partitions! No special restrictions, no special con
figuration or PIF files to create for each program that you in
tend to run under it.

Now, I have some programs that do things with DOS and the
BIOS that would probably be illegal in Mississippi. I know that
sooner or later I'll try to run something that DoubleDOS objects
to, but so far I haven't found it. The program comes with a large
number of patches that are easy to apply to programs that are
"badly behaved", that is, that write directly to the screen
refresh buffer rather than using DOS services for display. It
comes with special print drivers for LOTUS, including one that
allows a single copy of 1-2-3 to be used with color AND
monochrome adapters, and an improved version of the AN
SI.SYS file that can simply be substituted for it in a CON
FIG.SYS file. None of the patches affects the way these
programs work without DoubleDOS, so they can be installed
without worry.

Though it can vary somewhat depending on your installaton
(how many display adapters you use of what kind), my im
plementation of DoubleDOS seems to require about 20K of
overhead, a 20K I'm glad to devote for the purpose. The

48

program works by partitioning DOS into two areas to load an
"upper program" and a 'lower program". I have it set aside
320K for RBBS-PC and Kermit in the upper area, and I am left
with 210K in the bottom area, to do with as I want. So far, as I
said, I haven't been able to find anything I can't do with it. Not
only can I run RBBS-PC and still use my word processor, I can
do so and edit a file of almost 64K in memory, AND be printing
from the optional 16K buffer at the same time!

That's right, the optional 16K buffer. DoubleDOS lets you set
up an optional printer buffer using anywhere from lK to 64K of
your RAM for the purpose. One of my printers has only an 80
character buffer, the other a 2K buffer, and I've wanted a big
printer buffer for a long time but never badly enough to justify
the considerable cost. Using DoubleDOS, I set aside 16K that I'm
willing to spare for the purpose. Printing to that memory is done
at about 5K per second, and when the last 16K has been sent to
the printer, the computer is free again for the next job.

Now, I know someone is thinking "doesn't he know about
PRINT.COM from DOS", but believe me, it's not the same.
DoubleDOS offers a choice of four different methods of im
plementing the printer driver, using interrupts, the clock, direct
printing (no buffer), or the ROM printer interface (also no buf
fer). Depending on how your particular compute~ is set up, you
may not be able to use the interrupt method (the best), but the
clock method is nearly as good, and it works on my not-l()()%
compatible clone just fine. If no buffering is needed, the direct
method can be used, and if all else fails, the ROM interface will
almost certainly work with any computer, though with a speed
penalty.

Actually, PRINT.COM is vastly improved by DoubleDOS, and
in fact two separate copies of it can be used, one in the upper
memory partition and one in the lower. That means that four
programs can actually be active at one time, two applications
and two copies of PRINT.COM. Now listen closely, 'cause you're
not gonna believe this - you can not only RUN four programs
that print at one time, but they could conceivably operate FOUR
DIFFERENT PRINTERS at once!

DoubleDOS makes it easy to take full advantage of whatever
resources your computer has available. Besides being able to
operate multiple printer ports, a computer running DoubleDOS
is able to operate two monitors at once, according to SoftLogic,
one displaying the output from each program. They have finally
provided the reason I need to go ahead and get a color graphics
adapter and another monitor. I expect it to be a real thrill to see
two programs producing screen output simultaneously, and to
be able to ZAP the keyboard back and forth between them by
pressing a hot key!

To sum things up, DoubleDOS has made concurrent
multitasking not only possible, they've made it affordable and
simple. It's easy to install, easy to modify with its own DDCON
FIG.SYS file, and easy to use. Pressing ALT-DEL at any time
produces a full status page that identifies what programs are
running in the two partitions and provides control over them.
Pressing ALT-ESC changes easily from one partition to the
other. Rather than requiring special configurations for each
program to be used, DoubleDOS lets you run whatever you want
to, from an ordinary looking DOS prompt in each partition.
(There is an additional message above the DOS prompt that
shows which partition you're in, and how much memory is
available there.>

The DoubleDOS manual is professionally written and under
standable. It is organized, well indexed, and offers clear exam
ples whenever they might help. SoftLogic even provides an af-

The Computer Journal/Issue #26



ter-hours BBS support system in addition to their regular
technical support (numbers below).

The config file tDDCONFIG.SYS) that DoubieDOS looks for
each time it is executed already contains most of the available
alternatives. arranged so that each can be rejected by
preceeding it with an asterisk, or ,selected by removing that
asterisk. The same file can contain the equivalent of
AUTOEXEC,BAT statements for both of the memory partitions.
so that each of them can be individually customized.

I haven't had time to try DoubieDOS with every program on
my hard disk, but so far there have been no disappointments at
all. I regularly use the CED program (public domain command
line editor) with a large file of aliases, so I can enter something
like

tcj

and end up in the directory with my articles for The Computer
Journal, rather than having to type a long path name like

cd \ wordproc \ articles \ compjour

and so far DoubieDOS hasn't had any problems with CED. I use
QuickKey, a little PD program to speed up keyboard repeats,
and PCWNDW22, a PD version of SideKick, complete with
alarm clock, notepad, and so on. SoftLogic recommends in
stalling DoubieDOS before any of the resident programs. That's
kinda refreshing, compared to all the other programs that each
insist on being the LAST one loaded!

You don't have to be the SysOp of a bulletin board system to
appreciate multitasking. If you've ever twiddled your thumbs
waiting for the computer to finish downloading a large file, or if

you've ever sat around waiting for your printer to finish, you'll
appreciate concurrent multitasking. If you develop programs,
you can compile and link in the background while editing the
next source module.

If you've ever experimented with rtlal-world computing you
will appreciate how easy it is to prOVide computer control of
your house in the background, while keeping the computer
available for other needed tasks. In a commercial or office
building, one of the computers can monitor a security system in
the background, while an operator also uses it to post
receivables and print invoices. If you have two parallel printers,
you can buy a copy of DoubieDOS AND another parallel port for
less than the cost of a printer"A-B" switch.

Fact is, our CPUs are fast enough these days, and we have
enough cheap memory available, that it just doesn't make sense
for a computer to be limited arbitrarily to one task at a time. Not
with DoubieDOS so easy to use, and available at a price anyone
can afford.

The DoubieDOS multitasking, concurrent DOS utility is
produced by Softlogic Solutions, 530 Chestnut St., Manchester,
NH 03101. Tech support is available by calling (603) 644-5555 (9
a.m. to 5 p.m. Eastern time) or on their BBS at (603) 644-5556 (5
p.m. to 8 a.m. Eastern time). The published list price is $49.95,
but it is discounted by many sources. •

The public domain files PS and DOSAMATIC mentioned in
this article can be downloaded from the 16-BIT file section of
the TCJ bulletin board (406) 752-1038, and are available on MS
DOS 5.25" with other public domain utilities for $10 postpaid in
the U.S.

AMPRO Distributor
On October I, 1986, BEAR Electronics

became an authorized dealer for AM
PRO Computers. They now stock all
AMPRO Little Boards and other produc
ts for immediate shipment to customers.

BEAR Electronics, located in Moraga,
California, 5 miles east of Oakland, was
founded by Bob Christensen, Ed Wrinkle,
and Rich Tumin as a distributorship for
electronic products which they had
previously been marketing individually
as manufacturers reps. Both Bob and Ed
have represented AMPRO successfully
for more than a year in Northern
California and Nevada. The staff at
BEAR all have extensive experience in
the electronic and computer fields.

To celebrate their new dealership,
Bear is selling all AMPRO products at
10% off thru December 31, 1986. To pur
chase AMPRO products, or for more in
formation, call BEAR Electronics at
(415) 376-0125.

The Computer Journal/Issue ;'26

Multi-C Function Library
Cytek has announced its Multi-C multi

tasking library for C programmers.
Multi-C is an easy to use library of fun
ctions which, when linked with the user's
code, provides a complete multi-tasking
environment within the program.
Designated functions become tasks
which can schedule other tasks, com
municate with each other using queues
and flags, and utilize almost all standard
C functions. Interrupt handlers are sup
ported.

Cytek originally developed Multi-C to
meet their customers' needs for multi
tasking within their products. By incor
porating Multi-C into the program design
they are able to implement complex
communications functions or data
logging, for example, without com
promising the user interface or using dif
ficult to maintain polling techniques.

Multi-C is available immediately for
Lattice, Microsoft, and Computer In
novations 8086 C compilers as well as

Paragon's Z-80 C Cross Compiler for the
PCDOS/MSDOS systems at $149. Ver
sions for other compilers as well as "Ac
cessory Kits" for Communications and
Windowing facilities will be announced
shortly.

Contact Alan Finger at Cytek, 805 Tur
npike Street, Unit 202, North Andover,
MA 01845 phone (617) 687-8086 to order, or
for more details.

68000 Operating System
Hawthorne Technology is supplying

their K-OS ONE operating system for the
68000 to establish a standardized
operating system that will allow an af
fordable software base to be developed
for it. Several hardware products are on
the market using the 68000, but the
operating systems that are available are
either very expensive for the average
user, very awkward with their
limitations, or both.

The operating system is designed to be
(Continued on page 55)

49



11.- B_a_c_k_ls_s_u_e_s_A_v_a_il_a_b_le_: 1

Issue Number I:
• RS-232 Interface Part One
• Telecomputing with the Apple II
• Beginner's Column: Getting Started
• Build an "Epram"
Issue Number 2:
• File Transfer Programs for CP/M
• RS-232 Interface Part Two
• Build Hardware Print Spooler: Part I
• Review of Floppy Disk Formats
• Sending Morse Code with an Apple II
• Beginner's Column: Basic Concepts
and Formulas
Issue Number 3:
• Add an 8087 Math Chip to Your Dual
Processor Board
• Build an AID Converter for the Apple
II
• Modems for Micros
• The CP/M Operating System
• Build Hardware Print Spooler: Part 2
Issue Number 4:
• Optronics, Part I: Detecting,
Generating, and Using Light in Elec
tronics
• Multi-User: An Introduction
• Making the CP/M User Function More
Useful
• Build Hardware Print Spooler: Part 3
• Beginner's Column: Power Supply
Design
Issue Number 5:
• Optronics, Part 2: Practical Ap
plications
• Multi-Processor Systems
• True RMS Measurements
• Gemini-lOX: Modifications to Allow
both Serial and Parallel Operation
Issue Number 6:
• Build High Resolution 5-100 Graphics
Board: Part 1
• System Integration, Part 1: Selecting
System Components
• Optronics, Part 3: Fiber Optics
• Controlling DC Motors
• Multi-User: Local Area Networks
• DC Motor Applications
Issue Number 8:
• Build VIC-20 EPROM Programmer
• Multi-User: CPlNet
• Build High Resolution 5-100 Graphics
Board: Part 3
• System Integration, Part 3: CP/M 3.0
• Linear Optimization with Micros
Issue Number 9:
• Threaded Interpretive Language, Part
1: Introduction and Elementary
Routines
• Interfacing Tips & Troubles: DC to DC
Converters
• Multi-User: C-NET
• Reading PCDOS Diskettes with the
Morrow Micro Decision
• DOS Wars
• Build a Code Photoreader

50

Issue Number 14:
• Hardware Tricks
• Controlling the Hayes Micromodem II
from Assembly Language, Part 1
• 5-100 8 to 16 Bit RAM Conversion
• Time-Frequency Domain Analysis
• BASE: Part Two
• Interfacing Tips and Troubles: Inter
facing the Sinclair Computers, Part 2
Issue Number 15:
• Interlacing the 6522 to the Apple II
• Interfacing Tips & Troubles: Building
a Poor-Man's Logic Analyzer
• Controlling the Hayes Micromodem II
From Assembly Language, Part 2
• The State of the Industry
• Lowering Power Consumption in 8"
Floppy Disk Drives
• BASE: Part Three
Issue Number 16:
• Debugging 8087 Code
• Using the Apple Game Port
• BASE: Part Four
• Using the 5-100 Bus and the 68008 CPU
• Interfacing Tips & Troubles: Build a
"Jellybean" Logic-to-RS232 Converter
Issue Number 17:
• Poor Man's Distributed Processing
• BASE: Part Five
• FAX-64: Facsimile Pictures on a
Micro
• The Computer Corner
Interfacing Tips & Troubles: Memory
Mapped I/O on the ZX81

Issue Number 18:
• Parallel Interface for Apple II Game
Port
• The Hacker's MAC: A Letter from Lee
Felsenstein
• 5-100 Graphics Screen Dump
• The LS-loo Disk Simulator Kit
• BASE: Part Six
• Interfacing Tips & Troubles: Com
municating with Telephone Tone Con
trol, Part 1
• The Computer Corner
Issue Number 19:
• Using The Extensibility of Forth
• Extended CBIOS
• A$500 Superbrain Computer
• BASE: Part Seven
• Interfacing Tips & Troubles: Com
municating with Telephone Tone Con
trol, Part 2
• Multitasking and Windows with CP/M:
A Review of MTBASIC
• The Computer Corner
Issue Number 20:
• Designing an 8035 SBC
• Using Apple Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
• Soldering and Other Strange Tales
• Build a 5-100 Floppy Disk Controller:
WD'J:lffl Controller for CP/M 68K
• The Computer Corner

Issue Number 21:
• Extending Turbo Pascal: Customize
with Procedures and Functions
• Unsoldering: The Arcane Art
• Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World
• Programming the 8035 SBC
• The Computer Corner
Issue Number 22:
• NEW-DOS: Write Your Own Operating
System
• Variability in the BDS C Standard
Library
• The SCSI Interface: Introductory
Column
• Using Turbo Pascal ISAM Files
• The AMPRO Little Board Column
• The Computer Corner
Issue Number 23:
• C Column: Flow Control & Program
Structure
• The Z Column: Getting Started with
Directories & User Areas
• The SCSI Interface: Introduction to
SCSI
• NEW-DOS: The Console Command
Processor
• Editing The CP/M Operating System
• INDEXER: Turbo Pascal Program to
Create Index
• The AMPRO Little Board Column
• The Computer Corner
Issue Number 24:
• Selecting and Building a System
• The SCSI Interface: SCSI Command
Protocol
• Introduction to Assembly Code for
CP/M
• The CColumn: Software Text Filters
• AMPRO 186 Column: Installing MS
DOS Software
• The ZColumn
• NEW-DOS: The CCP Internal Com
mands
• ZTIME-l: A Realtime Clock for the
AMPRO Z-80 Little Board
• The Computer Corner

Issue Number 25:
• Repainng &Modifying Printed Circuits
• Z-Com vs Hacker Version of Z-System
• Exploring Single Linked Lists in C
• Adding Serial Port to Ampro Little Board
• Building a SCSI Adapter
• New-DOS: CCP Internal Commands
• Ampro '186: Networking with SuperDUO
• ZSIG Column
• The Computer Corner

The Computer Journal/Issue N26



I Total Enclosed I
I I
I Check or Money Order on U.S. Bank in U.S. Funds. I
I Make payable to THE COMPUTER JOURNAL. I
I II 0 Check enclosed 0 VISA 0 MasterCard Card # I
I I
I Expiration date Signature I
I I
I Name I
I I
I Address I
I I
I City State ZIP I
I I
I I

i The Computer Journal i
I 190 Sullivan Crossroad. Columbia Falls. MT 59912 Phone (406) 257-9119 I

'-- ..J

r TCJ ORDER FORM ---------------1
• •
I I
I Subscription: U.S. Can &Mex Surface Total I
I ~~ I
I 6 issues per year I
I oNew CRenewal 1yr. $14.00 $22.00 $24.00 I
I 2 r. 24.00 I
I Back Issues #'s 1 thru 21 $3.25 ea. $3.25 ea. $4.75 ea.I #'s 22 thru 25 $3.75 ea. $3.75 ea. $5.25 ea. I
I 's I
I User Disk $10 $10 $10
I Description: I
I I
I Size: I
I I
I Format: I
I I
I System: I
I I

* * * Orders can also be entered by modem on the TCJ BBS (406) 752·1038 by leaving a private
message for SYSOP with the required information.

The Computer Journal/Issue '26 51



1~====B=O=O=kS=O=f=1"=t=e=re=s=t=======1
Turbo Pascal A Problem-Solving
Approach - by Elliot B. Koffman
Published by Addison-Wesley Publishing
Company, Inc., 1986, 532 pages plus Ap
pendixes, 7 x 9".

An excellent college text for those
new to Pascal and Turbo Pascal. The
author proceeds through the beginning
material to more complex techniques
with many programming examples and
exercises at the end of each chapter to
allow readers to test their learning.
Especially helpful are the case studies
and the discussion of common program
ming errors in every chapter. The con
tents of the book are as follows:

Problem Solving and Programming;
Processing a High-level Language
Program; Formatting Program Output;
Introduction to Data Types; Represen
ting and Refining Algorithms; Using
Procedures for Subproblems; Decision
Steps in Algorithms; Tracing a Program
or Algorithm; Problem Solving
Strategies; Repetition in
Programs-Counting Loops;
Generalizing a Solution; Repeating a
Program Body; Debugging and Testing
Programs; Syntax Diagrams; The if
Statement Revisited; The while
Statement; Procedure Parameters; Ad
ding Data Flow Information to Structure
Charts; Nested Procedures and Scope of
Identifiers; Debugging a Program
System; Constant Declarations;
Numeric Data Types-REAL and IN
TEGER; Functions in Arithmetic Ex
pressions; BOOLEAN Variables, Ex
pressions, and Operators; Character
Variables and Functions; Introduction to
Programmer-defined Data Types; The
case Statement; Set Values in Decisions;
The General for Statement; The repeat
Statement; Nested Loops; User-defined
Functions; Declaring and Referencing
Arrays; Arrays with Integer Subscripts;
Manipulating Entire Arrays; Reading
Part of an Array; Strings and Arrays of
Characters; General Arrays; Arrays of
Arrays; String Manipulation; Declaring
a Record; Manipulating Individual
Fields of a Record; Manipulating an En
tire Record; Arrays of Records; Sear
ching an Array; Sorting an Array;
General Data Structures; Variant
Records; Set Data Type and Set

52

Operators; TEXT Files; User-defined
File Types; Random Access Files; Data
Base Inquiry; The Nature of Recursion;
Recursive Procedures; Recursive Fun
ctions; Binary Search of an Array; Sear
ching by Hashing; Additional Sorting
Algorithms; The Quicksort Algorithm;
The NEW Statement and Pointer
Variables; Understanding Dynamic
Allocation; Linked Lists; Manipulating
Linked Lists Using Pointer Variables;
Maintaining a Linked List; Stacks and
Queues; Multiple-linked Lists and Trees;
Maintaining a Binary Search Tree.

Advanced Turbo Pascal Program
ming and Techniques - by Herbert
Schildt .
Published by Osborne McGraw-Hill,
1986,269 pages, 7 x 9"

A well written book which gives the
reader a good look at intermediate level
topics and provides insight into many
common programming problems. A
thorough discussion of interfacing to
assembly language routines and the
operating system includes a comprehen
sive list of the PC-DOS System Routines
accessed through interrupts USing the
MsDos procedure. Many programming
examples are included in the book and
the programs are also available on disk.
The contents are as follows:

Pascal as a Structured Language,
Turbo Pascal Enhancements; Built-in
Procedures; Differences Between Turbo
Pascal and Standard Pascal; Classes of
Sorting Algorithms; Judging Sorting
Algorithms; Sorting by Selection; Inser
tion Sort; Improved Sorts; Shell Sort;
Quick Sort; Sorting Strings; Sorting
Records; Sorting Disk Files; Search
Methods; Queues; The Circular Queue;
Stacks; Linked Lists; Singly Linked
Lists; Doubly Linked Lists; A Mailing
List That Uses a Doubly Linked List;
Binary Trees; New; Dispose; Mark and
Release; Sparse-Array Processing; The
Linked-List Approach to Sparse Arrays;
The Binary Tree Approach to Sparse
Arrays; The Pointer-Array Approach to
Sparse Arrays; Reusable Buffers; The
Unknown Memory Dilemma; Fragmen
tation; Dynamic Allocation and Ar
tificial Intelligence; Assembly Language

Interfacing; Internal Data Formats and
Calling Conventions of Turbo Pascal;
Creating an External Assembly Code
Routine; In-Line Assembly Code; When
to Code in Assembler; Operating-System
Interfacing; BIOS and DOS Functions;
Using the Scan Codes From the PC
Keyboard; Final Thoughts on Operating
System Interfacing; Samples,
Populations, Distributions, and
Variables, Basic Statistics; Simple Plot
ting on the Screen; Projections and the
Regression Equation; Making a Com
plete Statistics Program; Types of
Ciphers; Substitution Ciphers; Tran
sposition Ciphers; Bit-Manipulation
Ciphers; Data Compression; Code
Breaking; Random Number Generators;
Determining the Quality of a Generator;
Using Multiple Generators; Simulations;
Simulating a Check-out Line; Random
Walk Portfolio Management; Dissecting
an Expression; Expression Parsing; A
Simple Expression Parser; Adding
Variables to the Parser; Syntax
Checking in a Recursive Descent Par
ser; Converting C to Turbo Pascal; A
Comparison of Cand Turbo Pascal; Con
verting BASIC to Turbo Pascal; Creating
Turbo Pascal Subprograms From BASIC
Programs; Getting Rid of Global
Variables; Avoiding Code Duplication;
Use of Procedures and Functions; The
case Statement Versus if/then/else Lad
ders; Porting Programs; Using const;
Operating System Dependencies; Turbo
Pascal's Extensions; Debugging; Poin
ter Problems; Redefining Built-in
Procedures and Functions; Unexpected
Syntax Errors; if/then/if/else Errors;
Forgetting the var Parameter in
Procedures and Functions.

The Computer Journal/Issue 1126



Editor

Continued from page 2

and interfacing to bus systems. There'll
also be information on implementing
dedicated controllers using single board
computers, and this will entail boUt sof
tware and hardware techniques.

The emphasis is on solutions to
problems, and in order to serve you we
need to know the problems you face so
that we can concentrate on the solutions
you need. As Dave Thompson stated in
the last issue of Micro Cornucopia,
harass an editor. We receive very little
feedback from our readers, and your in
put is vital.

Market Developments
The latest financial reports show that

IBM's market share is declining (both in
micros and mainframes), and that they
are losing control of the PC market
because of the success of the clones. IBM
usually replaces each product after two
to three years so that people have to
upgrade because the old products are no
longer supported, but there are now so
many clones in use that third party sup
port and continued life is assured regar
dless of what IBM does. There will be
tremendous advances in computers, but
there'll alway be some Apple II, CP1M,
and IBM-PC systems in continued use.

Many of the changes will be as a result
of the advances in chip technology which
will provide the performace im
provements that will force us to entirely
change our concepts of computer use and
programming. As an indication of what
is coming, Faraday has announced a two
chip set which provides all the functions
of an IBM-PC, and they say that they will
be be able to provide everthing on one
chip! Putting the entire CPU on a chip
was the milestone which established the
micro revolution - it's. difficult to en
vision what will happen when we have
the entire computer on a chip.

Current useage is moving from floppy
disks to hard drives, and it will soon
move to very large RAMs for storage.
There are already systems with 4 to 8
Mega bytes of available RAM, and RAM
will soon replace the hard disks leaving
high capacity removable media drives
which will be used for backup. Maxell (a
subsidiary of Hitachi) has announced a
5% inch high density cartridge based
media with 100 Mega byte capacity. It
uses perpendicular recording techniques
along with 10,000 tracks per inch to ac
complish this. Perpendicular recording
has been discussed for some time, but

The Computer Journal/Issue 1126

SO Software. Inc., maker of the original

CP/M-aD CLanguage Development

System, knows

Time is precious
So the compilation, linkage and execution
speeds of BOS Care the fastest available, even
(especially') on floppy-based systems. Just ask
any user' With 15.000 + packages sold since
1979. there are lots of users ..

New' Ed Ream's RED text editor has been
integrated into the package. making BOS Ca
truly complete. self-contained Cdevelopment
system.

Powerful original features: COB symbolic
source-level debugger. fully customizable
library and run-time package (for convenient
ROM-ing of code), XMOOEM-compatible
telecommunications package. and other sample
applications.

National CUser's Group provides direct access
to the wealth of public-domain software written
in BOS C. including text editors and formatters,
BBS·s. assemblers, Ccompliers. games and
much more.

Complete package price: $150.
All soft-sectored disk formats, plus Apple
CP/M. available off-the-shelf. Shipping: free. by
UPS. within USA for prepaid orders. Canada: $5.
Other: $25. VISA, MC. COD, rush orders accepted.

SO Software. Inc.
PaBox 2368
Cambridge MA 02238
617 ·576 •3828

53



"

"

'.

at that time. They've designed with the
idea that everything is locked together in
one system and stays that way for ever,
but that's not the way I operate.

Yesterday the Morrow S-lOO system
which runs the photo typesetter went up
in smoke, the power supply is dead and
I'm not sure if it took out any of the boar
ds. I grabbed a single board computer
and lashed it up so that I could continue
setting type because we are already
behind schedule. There is no real
problem moving the software over
because everything on this system is
either my own programs, software with
realistic agreements, or public domain
software - that's one of the real
pleasures about avoiding commercial
software with restrictive licenses. I'll
have to revise some of the com
munications procedures to talk to dif
ferent I/O chips and ports, which means
that I'll also have multiple copies of these
programs. I'll have to figure out how to
have the software determine which
system it is running on and patch itself to
suit. The easiest way would be to change
all the BlOSs to include an identifier
(something like ZCPR3's environmental
descriptor), but I'd rather not mess with
the BIOS. Anyone have any tips on ac
complishing this in CP/M? Maybe the
best thing would be to take the time to get
ZCPR3 on all the systems and then just
use the environmental descriptor.

I really like the power and flexibility of
having the source code for programs so
that I can fine tune them. I'll continue to
buy programming tools like compilers,
libraries, etc., but I'm trying to avoid
using anything without the source code
for my working programs. I hate to think
about giving up WordStar because I
really like it, but I'm looking at several
public domain programs which will allow
me to patch in things like the terminal
identifier subroutine (if I can figure out
how to do it). •

learning to boot their system and call up
the files? Your thoughts and comments
will be appreciated.

Computer Mania
I (sometimes) envy those people with

one 'computer-in-a-box' systems. Their
life must be so simple and easy.

I don't know what your area looks like,
but I'm sitting here with four different
computers, two different terminals,
various drives, and one printer. There
are also other various systems and
peripherals scattered around the office,
and I'm always juggling cables, disk
formats, and terminal configurations,
when switching from system to system.
My problems will get worse instead of
better because I want to keep on trying
new systems in order to learn about
them, but I sure wish that there was
more standardization as far as terminal
interfaces, disk formats, and cable con
nectors. It's gotten so bad that I have
three installed versions of WordStar on
my 8 inch CP/M drive so that I can work
with whichever terminal is available.
That's ridiculous! It's not doing any fan
cy graphics and the terminal manufac
turers should have been able to agree on
a core set of general purpose cursor
commands for standard text operations
- they could have added their fancy
special purpose commands on top of
these, but the standard commands
should work on any terminal. Lacking
that, they should have provided a means
for the software to query the terminal
and download the commands for
whichever terminal I happen to be using

The SCG-TP program produces
fully commented and labeled
source code for your TURBO
Pascal system. To modify,

just edit and assemble. Version 3.00A (Z80) is $45.
SCG's available for CP/M 2.2 ($45) and CP/M+ ($75).
Please include $1.50 postage (in Calif add 6.5%).

Source Code Generators
by C. C. Software can
give you the answer.~ _ ~

"The darndest thing ~

I ever did see ... " ..:;~ !l!L!ll1
" •.. if you're at ...... J~
all interested in ~ ,.,'.-v
what I s going on in 0 "Th. Cod. Buot.r."

your system, it's
worth it."
Jerry Pournelle,
BYTE, Sept '83

Computer Club Activity
The current issue of 'Push & Pop' (The

Sacramento' Microcomputer User's
Group newsletter) reports on the
declining participation from the mem
bers. Is the computer club era over?
Perhaps now that it is so easy to buy a
working computer with the needed sof
tware the need for clubs has diminished.
What's happening with the club scene in
your area? Are people just interested in

development has been held back by the
lack of a sUItable recording head. Now,
Maxell has developed a perpendicular
recording head using an amorphous
metal·ferrlle magnetic conduit to convey
vertical recording signals to a drive in
tegrator s read-write electronics. Adrive
would have to include a lot of track-servo
control electronics to achive 10,000
tracks pt'r Inch. hut even existing stepper
servo technology would present
sigmflcant data density and data tran
sfer rate improvements. With the new
systems you'll operate entirely from
RAM. using the magnetic media only for
uploading new programs and
downloading data for backup.

!'lew Subscription Rates
We've resisted any rate increases as

long as possible. but steadily increasing
production and fulfillment costs have
forced us to revise our rates. Effective
January I. 1987. our rates will be one
year $16 or two years $28 in the U.S. You
have the opportunity to extend your sub
scription before January 1, at the old
rates.

C. C. Software, 1907 Alvarado Ave. Dept M
Walnut Creek, CA 94596 (415)939-8153

CP/M is a registered trademark of Digital Research, Inc.
TURBO Pascal is a trademark of Borland International

54 The Computer Journal/Issue 1#26



Computer Corner

(Continued from page 56)
(818) 889-1646) brought several of their
add-ons, a 32032 and a 68020 both with up
to 4 megabytes of memory. These units
are described as small mini-computers
and will match the speeds of VAX
system. What must be kept in mind is
these units use a XT clont' for their
system base. The clone base then allows
users to use the 68K software and stan
dard PCDOS software without changing
machines. You get functionality, speed,
and standardization all at reasonable
prices.

A last comment on the SOG was a
general consensus about computing. It
was felt that all the new devices were for
the most part equally good. When con
ducting speed test one type might be
faster than another. but the next test
might reverse these finding. In short
they are all good devices which can sup
ply the average person with more com
puting power than they might ever need.
That last statement was also a discussion
area in itself as several vendors pointed
out how they thought 2 megabytes of
memory was more than enough, now 4 is
what most want, and they say several
user are asking for 8 megabytes. It
seems no matter what you feel is enough
there is always someone who needs
more.

With the SOG laid aside, a problem I
have been seeing is with hard disks. Two
problems seem consistent, disk failures
and no backups. The first problem is the
heat and wear that these disks are get
ting. When using floppies the motors and
heads are usually unloaded when not
being used. A hard disk on the other hand
is running and loaded at all times. These
units are tightly sealed to keep out dust
that would shorten their life but still
bearings will only last so long. Because
of this it is most important to buy good
hard disks, but also to practice backing
up your data regularly.

It seems lately that more systems are
getting into the hands of beginners who
have little knowledge of losing data. Most
manuals and sales people spend far too
little time explaining the importance of
backing data up. Usually losing data on
ce cures the problem. Extended life
might be possible if larger ram-disk
systems were used and the drives turned
off. This would require buffering a meg
or two of data before accessing the drive.
As most users know it can take as much
as one minute for the hard disk to reach
speed, so considerable buffering would

The Computer Journal/Issue 1J26

be needed to make it work. My reasoning
is that most users turn 'the machine on at
8 a.m. and then off at 5 p.m., while only
really using the unit for several hours
during the day.

I plan on using floppies and ram
drives. My ram drives are faster than
hard disks, and the floppy drives last
forever with few problems.

As for my problems they are only star
ting, I am going back to college. I have
decided to pursue my interests in using
computers for education by starting a
master's program in that area. It should
only stop my major articles, not this
column as I will still be working 8hours a
day on electronic systems. In the past I
have written many articles and have
always tried to cover the topic for novice
users to the pros. Awhile ago the Journal
recieved a letter indicating that the
reader had missed some points in one of
my articles. Should that happen again.
please drop us a card letting us know
what you didn't understand. Someone
will then write an article covering that
subject fully, so that you can get the most
out of this magazine. With my busy
schedule it will not always be possible for
me to be sure I have not missed some
point, but bring it to my attention and I
will be glad to spend the time to cover
it. •

News

(Continued from page 49)

easy to implement, easy to use, and low
priced. It incorporates all of the features
you would expect from an operating
system like CP/M or MS-DOS, bringing
these features to the 68000. A simple
design was used to allow implementation
of the operating system on most 68000
hardware. Having the source code
makes it possible for you to modify and
maintain the operating system. You can
read and write ASCII files on Ms-DOS

format disks, and the number of devices
or open files is not restricted.

K-OS ONE is availble for $50 from
Hawthorne Technology, 8836 S.E. Stark,
Portland, OR 97216 phone (503) 254-2005,
and includes the source code for the
operating system and command
processor, the HTPL Compiler, a 68000
Assembler, a line editor, and a manual.
The operating system and command
processor are written in Hawthorne
Technology Programming Language
(HTPL> which is a high level language
hybrid. It has a structure like Modula-2
and RPN Expressions like Forth.

Advertiser's Index

AMPRO Computers 5, 14

Anderson Techno Prod 48

BD Software. . . . . . . . . . . . . . . . . . .. 53

Bear Electronics 18

Bersearch 11

BV Engineering.. .. . .. .. .. . 21

C.C. Software 54

CEC 43

Computer Journal. 50,51

Computer Trader 46

Echelon, Inc 19, 37

Hawthorne Technology 2

Integrand 35

Jerryco 45

Kenmore Computer Tech 18

LDL Electronics 45

Miken Optical 36

Miller Microcomputer Services 32

Rockland Publishing 22

55



THE COMPUTER CORNER
A Column by Bill Kibler

Computer mamla has not stopped,
especially at meetings of computer
hackers. Those who haven't been to a
SOG meeting are probably wondering
what I am talking about. Cryptic it may
seem, but crazy it was. That is the SOG V
that I went to last month. Held by the
Micro Cornicopia at Bend Oregon, this
event is getting better each year.

Last year when we were there, it was
the last few days of a two week vacation.
This year I took a special trip by myself,
and had more fun. The seminars were
still too short but then how do you stuff
fifty hours of talk into twenty-five. Dave
Thompson who is the editor of MicroC
started things off with a talk about the
magazine and was followed by technical
sessions covering all aspects of .com
puting.

For me there were a few good things
which I will cover, the other stuff you will
have to get from MicroC magazine or
plan on going next year. One important
thing for me was meeting Art our editor
here at Computer Journal. Art decided to
take the SOG in and set up a table for
pushing the magazine. I think he got
some good response but he also got to
meet several of his writers first hand.
The socializing with Art and others was
very beneficial for me. I had been losing
drive about computers but the SOG gave
it back to me.

One of the items that got me going was
an 68K operating system. Several of us
were in need of a cheap way to bring up a
68K system. Readers of this column
know that I am trying to work on a 68K
Forth operating system to be ROM
based. CPM68K is available, although I
don't think DRI has done anything with it
lately. The cost for DRI CPM68K is over
$300 which is much too expensive for
most of us who want to just play around.
Hawthorne Technology (8836 SE Stark,
Portland, OR 97216, (503)254-2005) has a
single board 68K multi user system they
are OEMing for which they also wrote
their own operating system. It is written
in a high level language they developed,
based on Forth and Modula. The
language and operating system have
some merits, but what is important is
they decided to supply a simpler version

58

of it for single users. I have received a
document on the language and operating
system already. There was a special
demonstration meeting at the end of
August, but I was unable to attend.

This operating system will sell for
about $50 and should help establish low
cost 68K systems. I live in Sacramento
California, and a fellow from our area
who was at SOG will be producing a
single board experimenters 68K system,
including the operating system for
somewhere around $500. These two items
should give people like myself who want
to play with 68K's a cheap way out. These
items will also have open-design which
will allow users to customize or change it
to suit their needs. There are several68K
systems around now, but few if any will
allow you to change anything on them. As
an experimenter/hacker, not having ac
cess to the insides of a system makes me
uninterested in todays current batch of
68K units.

Some time ago I talked about using a
modified BIOS that would allow a second
system to take control of the first unit
and transfer files as if they were your
own drives. The idea was to avoid having
to use modem 7 where some one must en
ter the files to be transfered on each ter
minat Using BYE has problems as you
must use XMODEM to actually transfer
files. What I want to do is to use all my
normal programs with the other systems
disks or files and have them appear to
my system as if they were two extra
drives.

I bought a program at the SOG that
pretty much matched or exceeded the
program I have been looking for. Called
POOR MAN'S NETWORK, (by ANDER
SON TECHNO-PRODUCTS 947 Rich
mond Road, Ottawa, Ontario, Canada
K2B 6R1, (613)722-0690) this software
package for $65 is pretty nice. It doesn't
work the same as if I had designed it, but
then nothing ever does. What the manual
says it will do, it does. My main dislike is
the absence of a seperate module which
you could .load or better yet ROM to
make a defined slave unit. As the
package comes, you SIGNON a terminal
setting drive and printer options. The
other unit also assigns drives and prin-

ters, and after that your drives can be
used by the other machine without you
being aware of it. You can leave
messages and write to each others drive
but you can not change the disks in the
drives. This non-changing disks I don't
like but then it only takes a few seconds
to SIGNOFF and then re-SIGNON with
new disks. I have installed it on several
systems and the patching for different
systems is very easy. They do provide
several already asembled overlays for
Kaypros, Bigboards, Apples, and a
couple other units. I will be sending him
my overlays soon, so there should be
quite a few systems it will work on. It
works only on CPM 2.2 systems and is 6K
long, hiding at the TOP of your TPA. This
6k file size is bad but then you most likely
will not use it all the time. My other com
plaint is the lack of a CP1M 68k version
so we can use it with the development
systems. I guess I am still going to have
to get my Forth system going.

The recent issue of Forth Dimensions,
the magazine of the Forth Interest
Group, has an article reviewing
Xmodem protocol and how to do it in For
th. This with some other recent Forth ar
ticles, may make it possible to do just
such a program in Forth. A network
system that is written in a portable
language, which can be moved between
different processors would sure help me
get my different systems communicating
with each other.

A considerable amount of time both in
official sessions and group get-togethers,
was spent on discussing new devices and
systems. The effects of the clones was
always a good topic. I also found lots of
other people that agreed that IBM made
considerable mistakes with the PC (both
in design and marketing). It has become
clear to almost all users that having
technically better hardware is no longer
important. A users software base has
become the major buying point. To com
bat this need for a fixed design and yet
still have better systems, several har
dware add-on boards are now available
to make clones small MINIs. Definicon
Systems Inc. <31324 Via Colinas, Suite
108, Westlake Village, CA 91362 phone

(Continued on page 55)

The Computer Journal/Issue _26

, "


